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what is learning theory?

A mathematical theory to understand the behavior of learning
algorithms and assist their design.



what is learning theory?

A mathematical theory to understand the behavior of learning
algorithms and assist their design.

Ingredients:

* Probability;

(Linear) algebra;

Optimization;

Complexity of algorithms;

High-dimensional geometry;

Statistics—hypothesis testing, regression, Bayesian methots, etc.

* ok ok ok %k ok



learning theory

Statistical learning

supervised—classification, regression, ranking, ...

unsupervised—clustering, density estimation, ...
semi-unsupervised learning
active learning

online learning



statistical learning

How is it different from “classical” statistics?

*

* ok k%

Focus is on prediction rather than inference;
Distribution-free approach;

Non-asymptotic results are preferred;
High-dimensional problems;

Algorithmic aspects play a central role.



statistical learning

How is it different from “classical” statistics?
Focus is on prediction rather than inference;
Distribution-free approach;

Non-asymptotic results are preferred;

High-dimensional problems;

* ok ok ok ok

Algorithmic aspects play a central role.

Here we focus on concentration inequalities.



a binary classification problem

(X,Y) is a pair of random variables.
X € X represents the observation
Y € {—1,1} is the (binary) label.

A classifier is a function X — {—1,1} whose risk is

R(g) = P{g(X) # Y} .



a binary classification problem

(X,Y) is a pair of random variables.
X € X represents the observation
Y € {—1,1} is the (binary) label.

A classifier is a function X — {—1,1} whose risk is
R(g) = P{e(X) # Y} .
training data: n i.i.d. observation/label pairs:
Dn = ((X1,Y1)s+-+4 (Xn, Yn))
The risk of a data-based classifier g, is

R(gn) = IED{gn(x) # Y|Dn} .



empirical risk minimization
Given a class C of classifiers, choose one that minimizes the

empirical risk:

1 n
g, = argmin R, (g) = argmin — Lg(x,)2Y,
! gel ! gec n ; g7



empirical risk minimization

Given a class C of classifiers, choose one that minimizes the
empirical risk:

1 n
g, = argmin R, (g) = argmin — Lg(x,)2Y,
! gec ! gec n ; g7
Fundamental questions:
% How close is Ry(g) to R(g)?
* How close is R(gn) to mingec R(g)7?
% How close is R(gn) to Rn(gn)?



empirical risk minimization

To understand |R,(g) — R(g)|, we need to study deviations of
empirical averages from their means.

For the other two, note that
|R(gn) - Rn(gn)l < Slelg |R(g) - Rn(g)l
g

and

R(en) — minR(e) = (R(gn) — Ro(g) + (Rolen) — minR(e)

< 2sup|R(g) — Ra(g)|
geC



empirical risk minimization

To understand |R,(g) — R(g)|, we need to study deviations of
empirical averages from their means.

For the other two, note that

|R(gn) - Rn(gn)l < sup |R(g) - Rn(g)l
gecC
and

R(en) — minR(e) = (R(gn) — Ro(g) + (Rolen) — minR(e)
< 2sup [R(g) — Ru(e)|

We need to understand uniform deviations of empirical averages
from their means.
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markov's inequality
If Z > 0, then

EZ
P{Z>t}§T.

This implies Chebyshev's inequality: if Z has a finite variance
Var(Z) = E(Z — EZ)?, then

P{|Z — EZ| > t} = P{(Z — EZ)? > t?} < Var(z) .




markov's inequality
If Z > 0, then

EZ

This implies Chebyshev's inequality: if Z has a finite variance
Var(Z) = E(Z — EZ)?, then

P{|Z — EZ| > t} = P{(Z — EZ)? > t?} < Var(z) .

Andrey Markov (1856-1922)




sums of independent random variables
Let Xi,...,X, be independent real-valued and let Z = "' | X;.
By independence, Var(Z) = I ; Var(X;). If they are identically
distributed, Var(Z) = nVar(Xj), so

n nVar(X
P{ZX;—nEXl >t} gatrz(l).
i=1

Equivalently,

)

n
Z X; — nEX;
i=1

Typical deviations are at most of the order y/n.

Var(X;)
2

>t\/ﬁ}S



sums of independent random variables
Let Xi,...,X, be independent real-valued and let Z = > | X;.
By independence, Var(Z) = I ; Var(X;). If they are identically
distributed, Var(Z) = nVar(Xy), so

n nVar(X
P{ZX;—nEXl >t} gatrz(l).
i=1

Var(X;) .

Equivalently,
n
3 Xi — nEX; v
i=1

)

Typical deviations are at most of the order 4/n.

>t\/ﬁ}§

Pafnuty Chebyshev (1821-1894)




chernoff bounds

By the central limit theorem,
n
lim P {Z X; — nEX; > t\/ﬁ} =1 — W(t/\/Var(X;))
n o0
i=1

< e—tz/(ZVar(Xl))

so we expect an exponential decrease in t2/Var(Xy).



chernoff bounds

By the central limit theorem,

lim P {Z X; — nEX; > t\/ﬁ} =1— W(t/\/Var(Xy))

i=1
< e—tz/(ZVar(Xl))
so we expect an exponential decrease in t?/Var(X1).
Trick: use Markov's inequality in a more clever way: if A > 0,

Re\Z—EZ)

P{Z —EZ >t} =P {eA(Z—EZ) > e*t} <=
e

Now derive bounds for the moment generating function Ee*(Z—£2)
and optimize A.



chernoff bounds

If Z =731, Xiis a sum of independent random variables,
n n
Ee* =E H eMi = H Ee*Xi
i=1 i=1

by independence. Now it suffices to find bounds for Ee*%i.



chernoff bounds

If Z =731, Xiis a sum of independent random variables,
n n
Ee* =E H eMi = H Ee*Xi
i=1 i=1

by independence. Now it suffices to find bounds for Ee*Xi,

Serguei Bernstein (1880-1968) Herman Chernoff (1923-)



hoeffding's inequality
If X1,...,Xn € [0, 1], then

EerXi—EX) e,\2/8 .



hoeffding's inequality
If X1,...,Xn € [0, 1], then

EerXi—EX) e,\2/8 .

We obtain

Wassily Hoeffding (1914-1991)




bernstein’s inequality

Hoeffding's inequality is distribution free. It does not take variance
information into account.

Bernstein's inequality is an often useful variant:

Let X1,..., X, be independent such that X; < 1. Let
v=>1",E[X?]. Then

n 2
P {Z (Xi — EX;) > t} < exp (-M) .

i=1



a maximal inequality

Suppose Y1,..., Yy are sub-Gaussian in the sense that
EeMYi < e>\2a2/2

Then

E. maxNYi <oy2logN.

it AR



a maximal inequality

Suppose Y1,..., Yy are sub-Gaussian in the sense that

EeMYi < e>‘2”2/2

E maxNYi <oy2logN.

=d,.e0y

Take logarithms, and optimize in A.



uniform deviations—finite classes

Let Ay,..., Ay C X and let Xq,...,X, bei.i.d. random points
in X. Let

1 n
P(A) = P{X; € A} and P,(A) = N D lxea
i=1

By Hoeffding's inequality, for each A,
EerP(A)—Pn(A)) — me(r/n) 3Li(P(A)—1xea)
= HEe(A/n)(P(A)_]‘XiGA) < /()
i=1
By the maximal inequality,

log N
E P(A;) — P,(A)) < .
j='}‘ffN( (A) n(Aj)) < n




johnson-lindenstrauss

Suppose A = {a1,...,a,} C RP is a finite set, D is large.
We would like to embed A in RY where d << D.
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Suppose A = {a1,...,a,} C RP is a finite set, D is large.
We would like to embed A in RY where d << D.

Is this possible? In what sense?

Given € > 0, a function f : RP — R js an g-isometry if for all

a,a’ €A,

(1—¢)|a—a'|” < |f(a) —F@)|]* < @ +e)[a—a|] .



johnson-lindenstrauss

Suppose A = {a1,...,a,} C RP is a finite set, D is large.
We would like to embed A in RY where d << D.

Is this possible? In what sense?

Given € > 0, a function f : RP — R js an g-isometry if for all

a,a’ €A,

(1—¢)|a—a'|” < |f(a) —F@)|]* < @ +e)[a—a|] .

Johnson-Lindenstrauss lemma: If d > (c/e2) log n, then there
exists an e-isometry f : RP — R,



johnson-lindenstrauss

Suppose A = {a1,...,a,} C RP is a finite set, D is large.
We would like to embed A in RY where d << D.

Is this possible? In what sense?

Given € > 0, a function f : RP — R js an g-isometry if for all

a,a’ €A,

(1—¢)|a—a'|” < |f(a) —F@)|]* < @ +e)[a—a|] .

Johnson-Lindenstrauss lemma: If d > (c/e2) log n, then there
exists an e-isometry f : RP — R,

Independent of D!



random projections

We take f to be linear. How? At random!
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We take f to be linear. How? At random!

Let f = (Wi’j)de with

where the X;; are independent standard normal.



random projections

We take f to be linear. How? At random!

Let f = (Wi’j)de with

where the X;; are independent standard normal.

For any a = (a1,...,ap) € RP,

1 d D
E|f(a)|* = azza,-zEXﬁj = [lall? .

i=1 j=1

The expected squared distances are preserved!



random projections

We take f to be linear. How? At random!

Let f = (Wi’j)de with

where the X;; are independent standard normal.

For any a = (a1,...,ap) € RP,
14D

E||f(a)||? = azzaﬁax;{j = |la||?.

i=1 j=1

The expected squared distances are preserved!
If(a)||?/||a]|? is a weighted sum of squared normals.



random projections

Let b = a; — aj for some aj,a; € A. Then

b {Elb : 8log(n/V/9) n 8Iog(n/\/5)}

d d
n
< P
<(p)f
< 0 (by a Bernstein-type inequality) .

If d > (c/e2)log(n/+/d), then

If(b)[>
Ib]|?

o

17(6)1 Blog(n/V5) _ 8log(n/ V)
Ok ‘1|> a T }

8log(n/+/9) 8Iog(n/\/5)<
a T a =

and f is an e-isometry with probability > 1 — 4.



martingale representation

Xi,..., X, are independent random variables taking values in
some set X'. Let f : X" — R and

Z=f(Xq,...,Xn) .

Denote Ei[-] = E[-|X1, ..., Xi]. Thus, EoZ = EZ and E,Z = Z.



martingale representation

Xi,..., X, are independent random variables taking values in
some set X'. Let f : X" — R and

Z=f(Xq,...,Xn) .

Denote Ei[-] = E[-|X1,...,X;]. Thus, EgZ = EZ and E,Z = Z.
Writing

A =FZ-FEZ,

we have

Z—EZ:iA;
i=1

This is the Doob martingale
representation of Z.



martingale representation

Xi,..., X, are independent random variables taking values in
some set X'. Let f : X" — R and

Z=f(Xq,...,Xn) .

Denote Ei[-] = E[-|X1,...,X;]. Thus, EgZ = EZ and E,Z = Z.
Writing

A =FZ—F_1Z,

we have

This is the Doob martingale
representation of Z. Joseph Leo Doob (1910-2004)



martingale representation: the variance

(&)

Now if j > i, E;A; = 0, so

n

=Y E|a +2) Ean;.

i=1 i>i

Var (Z) = E

EAjA; = AEA; =0,

We obtain

Var (Z) = E




martingale representation: the variance

n

Var (Z) = E <§A;>2 =Y E|a +2) Ean;.

i=1 j>i
Now if j > i, E;A; = 0, so
EiAjA; = AEA; =0,
We obtain

n

Var(Z) = E (;Ai)z =ZE[A?}.

i=1

From this, using independence, it is easy derive the Efron-Stein
inequality.



efron-stein inequality (1981)

Let Xg,...,X, be independent random variables taking values in
X. Letf: X" — Rand Z = f(Xq1,...,Xn).
Then

Var(Z)<EZ(Z E0Zz)? = EZVar()(Z)
i=1 i=1

where EWZ is expectation with respect to the i-th variable X; only.



efron-stein inequality (1981)

Let Xg,...,X, be independent random variables taking values in
X. Letf: X" — Rand Z = f(Xq1,...,Xn).
Then

Var(Z) < Ei(z —E0Z)? = Ezn:Var(i)(Z) :
i=1 i=1

where EWZ is expectation with respect to the i-th variable X; only.

We obtain more useful forms by using that
1
Var(X) = 5H«:(x —X)? and Var(X) < E(X — a)?

for any constant a.



efron-stein inequality (1981)

If Xi,...,X] are independent copies of X1, ...,X,, and
le = f(X17 cees Xz, Xlla Xit1seeos Xn),

then
1
Var(Z) < EE

S (z- z;>2]

i=1
Z is concentrated if it doesn’t depend too much on any of its
variables.



efron-stein inequality (1981)

If Xi,...,X] are independent copies of X1, ...,X,, and
Z|/ = f(X17 cees Xz, Xllv Xit1seeos Xn)a

then
1
Var(Z) < EE

n
-2y
i=1

Z is concentrated if it doesn’t depend too much on any of its
variables.

If Z =731, Xi then we have an equality. Sums are the “least
concentrated” of all functions!



efron-stein inequality (1981)

If for some arbitrary functions f;
Z; = fi(X1, oo, Xic1y Xig1y - -5 Xi)

then

Var(Z) <E

zn:(z — Zi)z]

i=1



efron, stein, and steele

Mike Steele

Bradley Efron Charles Stein



example: uniform deviations

Let A be a collection of subsets of X, and let X1,...,X, ben
random points in X drawn i.i.d.
Let

1 n
P(A) =P{X; € A} and Pn(A)= -3 Ixeca
n i=1
If Z = suppc 4 [P(A) — Pu(A)],

1
Var(Z) < —
2n



example: uniform deviations

Let A be a collection of subsets of X, and let X1,...,X, ben
random points in X drawn i.i.d.
Let

1 n
P(A) =P{X; € A} and Pn(A)= -3 Ixeca
n i=1
If Z = suppc 4 [P(A) — Pu(A)],

1
Var(Z) < —
2n

regardless of the distribution and the richness of A.



example: kernel density estimation

Let Xg,...,X, bei.i.d. real samples drawn according to some
density ¢. The kernel density estimate is

au = o oK (5.

i=1

where h > 0, and K is a nonnegative “kernel” [ K = 1. The L;
error is

Z= f(XI, s 9Xn) = / |¢(X) - (vbn(x)ldx .



example: kernel density estimation

Let Xg,...,X, bei.i.d. real samples drawn according to some
density ¢. The kernel density estimate is

ot = 0>k (),

where h > 0, and K is a nonnegative “kernel” f K=1. The Ly
error is

Z = f(Xe,. .., Xn) = / (%) — cn(x)|dx -
It is easy to see that

F(xts 2 %0) — F(Kr ooy Xy 50)]
1 X — X; x —x! 2
< /K —K dx < =,
nh h n

so we get Var(Z) < —.

N =

=



bounding the expectation

Let P/ (A) = %Zi":l Lxsca and let ' denote expectation only
with respect to X{,...,X/.
E sup |P,(A) — P(A)|= E sup |[E’[Pn(A) — P/(A)]|
AcA AcA

1 n
< E sup [Pn(A) — P(A)|= —E sup | > (Lxea — Ixsea)
AcA n AcA i=1



bounding the expectation

Let P/ (A) = %Zi":l Lxsca and let E’ denote expectation only
with respect to X{,...,X/.

E sup |Pn(A) — P(A)|=E sup [E'[Pn(A) — P, (A)]|
AcA AcA

n

> (Ixea — Ixren)

1
< E sup [Py(A) — P, (A)|= —E sup
AcA N AeAlig

Second symmetrization: if €1,...,&, are independent
Rademacher variables, then

n

1
= —E sup gi(Ix,ea — Ixien)
n AcA 2 ©

2
< IE sup
AcA

ZE]IXE/_\




conditional rademacher average

R, = E. sup
AcA

n
Z gilx,en

i=1

then )
E sup [Pa(A) — P(A)| < “ER, .
AcA n



conditional rademacher average

R, = E. sup
AcA

n
Z gilx,en

i=1

then )
E sup [Pa(A) — P(A)| < “ER, .
AcA n

R, is a data-dependent quantity!



concentration of conditional rademacher average

Define

RS:) = E€ sup ZEJ]]-XJGA
ACA |z

One can show easily that
0<R,—RY <1 and ) (Ra—RY)<R,.
i=1

By the Efron-Stein inequality,

Var(R,) <E (R, —R()? <ER, .
i=1



concentration of conditional rademacher average

Define

RS:) = E€ sup ZEJ]]'XJ'GA
ACA |z

One can show easily that
0<R,—RYD <1 and zn:(R., — Ry <R, .
i=1
By the Efron-Stein inequality,
Var(R,) < Ei(Rn —R()? <ER, .
i=1

Standard deviation is at most v/ER,,!



concentration of conditional rademacher average

Define

RS:) = E€ sup ZEJ]]'XJ'GA
ACA |z

One can show easily that
0<R,—RYD <1 and zn:(R., — Ry <R, .
i=1
By the Efron-Stein inequality,
Var(R,) < Ei(Rn —R()? <ER, .
i=1
Standard deviation is at most v/ER,,!

Such functions are called self-bounding.



bounding the conditional rademacher average

If S(XY7,.A) is the number of different sets of form
{X1,..., Xa}JNA:Ac A

then R, is the maximum of S(XY, .A) sub-Gaussian random
variables. By the maximal inequality,

}Rn - log S(X}, .A) .
2 2n



bounding the conditional rademacher average

If S(XY7,.A) is the number of different sets of form
{X1,..., Xa}JNA:Ac A

then R, is the maximum of S(XY, .A) sub-Gaussian random
variables. By the maximal inequality,

}Rn - log S(X}, .A) .
2 2n
In particular,
log S(XY, A
E sup |Pa(A) — P(A)| < ZE\/M .
AcA 2n



random VC dimension

Let V = V(x{, A) be the size of the largest subset of
{x1,...,%n} shattered by A.
By Sauer’s lemma,

log S(X7,.A) < V(X{,A)log(n+1) .



random VC dimension

Let V = V(x{, A) be the size of the largest subset of
{x1,...,%n} shattered by A.
By Sauer’s lemma,

log S(X7,.A) < V(X{,A)log(n+1) .

V is also self-bounding:
n .
Y (v-Vvi)y<v
i=1

so by Efron-Stein,
Var(V) < EV



vapnik and chervonenkis

1

Vladimir Vapnik Alexey Chervonenkis



beyond the variance

Xi,..., X, are independent random variables taking values in
some set X. Let f: X" — R and Z = f(Xy,...,X;). Recall the
Doob martingale representation:

n
Z-EZ=) A; where A=EZ-F_Z,
i=1

with E.[] = E[-|X1, cee Xi].

To get exponential inequalities, we bound the moment generating
function Ee*Z—EZ),



azuma's inequality

Suppose that the martingale differences are bounded: |A;| < ;.
Then

EeA(Z_EZ)z Ee)‘(z?ﬂ Ai) — EEneA(Zinz_ll Ai)"‘)\An
n—1 o
= Ee)‘(ziﬂ A')EneAA"

n—1
< BT 8) 3262 (b Hoefiding)

S eAz(Elnzl c|2)/2 .

This is the Azuma-Hoeffding inequality for sums of bounded
martingale differences.



bounded differences inequality
If Z = f(X1,...,Xp) and f is such that

[F(X15 .00 sxn) — F(x15. 00X, eeoyxn)| <

then the martingale differences are bounded.
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then the martingale differences are bounded.

Bounded differences inequality: if X1,...,X, are independent,
then , ,
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bounded differences inequality
If Z = f(X1,...,Xp) and f is such that

[F(X15 .00 sxn) — F(x15. 00X, eeoyxn)| <
then the martingale differences are bounded.

Bounded differences inequality: if X1,...,X, are independent,
then , ,
P{|Z — EZ| > t} < 272"/ 2= |

McDiarmid's inequality.

Colin McDiarmid



hoeffding in a hilbert space
Let Xy,...,X, be independent zero-mean random variables in a
separable Hilbert space such that || X;|| < ¢/2 and denote
v =nc?/4. Then, for all t > /v,

P {‘ > t} < e~ (t=v¥)?/(2v)

> %
i=1




hoeffding in a hilbert space

Let Xy,...,X, be independent zero-mean random variables in a
separable Hilbert space such that ||X;|| < ¢/2 and denote
v = nc2/4. Then, for all t > 4/v,

}p{‘ > t} < e~ (t=v¥)?/(2v)

n
2%
i=1
Proof: By the triangle inequality, HZLI X;H has the bounded
differences property with constants c, so

(e e

QA )

2v

—E >t—E

n
%
i=1

}

Also,

n

>ox

—1

E <.|E

2 n
=\ZE||X;||2 < W

> %

=1




bounded differences inequality

* Easy to use.
% Distribution free.

% Often close to optimal (e.g., Ly error of kernel density
estimate).

% Does not exploit “variance information.”
% Often too rigid.

* Other methods are necessary.



shannon entropy

If X, Y are random variables taking
values in a set of size N,

H(X) = — ) p(x) log p(x)

H(X[Y)=H(X,Y) — H(Y)
== p(x,y)logp(x]y)

X,y

H(X) < logN and H(X|Y) < H(X)

Claude Shannon
(1916-2001)



han's inequality
If X = (X1,...,Xp) and
X0 = (X1,...,Xi—1, Xis1,- -+, Xn), then

- _ 0]
> (HX) = H(XO) ) < H(X)

Proof:

H(X)= H(X®) 4+ H(X;|x®)
< H(XO) + H(Xi[ Xy, . . ., Xi—1)

Since Y ity H(Xi|X1, ..., Xi—1) = H(X), summing
the inequality, we get

Te Sun Han

(n — DH(X) < iH(X‘”) :
i=1



subadditivity of entropy

The entropy of a random variable Z > 0 is
Ent(Z) = E®(Z) — ®(EZ)

where ®(x) = xlog x. By Jensen's inequality, Ent(Z) > 0.



subadditivity of entropy

The entropy of a random variable Z > 0 is
Ent(Z) = E®(Z) — ®(EZ)

where ®(x) = xlog x. By Jensen's inequality, Ent(Z) > 0.

Han's inequality implies the following sub-additivity property.
Let X1,..., X, be independent and let Z = f(Xy,...,X,),
where f > 0.
Denote

Ent?)(2) = EVo(2) — o(EDZ)

Then

Ent(Z) < Ezn:Ent(i)(Z) :
i=1



a logarithmic sobolev inequality on the hypercube

Let X = (X1,...,Xy) be uniformly distributed over {—1,1}". If
f:{-1,1}" — R and Z = f(X),

1 n
Ent(Z?) < —E Z —Z7')?
nt( )_2;( )

The proof uses subadditivity of the entropy and calculus for the
case n = 1.

Implies Efron-Stein and the edge-isoperimetric inequality.



herbst’s argument: exponential concentration

If f:{—1,1}" — R, the log-Sobolev inequality may be used with
g(x) = eMM/2 where A €R.
If F(A) = Ee*? is the moment generating function of Z = f(X),
Ent(g(X)?)= AE {Ze)‘z} —E [e)‘z} logE [Ze)‘z]
= AF'(A) — F(A) log F(\) .

Differential inequalities are obtained for F().



herbst’s argument

As an example, suppose f is such that i ;(Z — Z./)i < v. Then
by the log-Sobolev inequality,

AF (M) — F(A)log F(\) < vi\zF()\)

If G(A) = log F(), this becomes
G /
( (>\)> < ¥
A — 4
This can be integrated: G(A) < AEZ 4+ Av/4, so

F(}\) S eAEZ—}\ZV/4

This implies
P{Z >EZ +t} < et/



herbst’s argument

As an example, suppose f is such that i ;(Z — Z./)i < v. Then
by the log-Sobolev inequality,

AF (M) — F(A)log F(\) < vi\zF()\)

If G(A) = log F(), this becomes
G /
( (>\)> < ¥
A — 4
This can be integrated: G(A) < AEZ 4+ Av/4, so

F(}\) S eAEZ—}\ZV/4

This implies
P{Z >EZ +t} < et/

Stronger than the bounded differences inequality!



gaussian log-sobolev and concentration inequalities

Let X = (X1,...,X;,) be a vector of i.i.d. standard normal If
f:R" — R and Z = f(X),

Ent(Z2) < 2E [||Vf(X)II2]

This can be proved using the central limit theorem and the
Bernoulli log-Sobolev inequality.



gaussian log-sobolev and concentration inequalities

Let X = (X1,...,X;,) be a vector of i.i.d. standard normal If
f:R" — R and Z = f(X),

Ent(Z2) < 2E [||Vf(X)II2]

This can be proved using the central limit theorem and the
Bernoulli log-Sobolev inequality.

It implies the Gaussian concentration inequality:

Suppose f is Lipschitz: for all x,y € R",

[f(x) — f(y)| < L|lx —yll -
Then, for all t > 0,

P {f(X) — Ef(X) >t} < e /(L)



an application: supremum of a gaussian process

Let (Xt);cq be an almost surely continuous centered Gaussian
process. Let Z = supyc7 X;. If

7" = s (3 ])

P{|Z — EZ| > u} < 2e~V/(27°)

then



an application: supremum of a gaussian process

Let (Xt);cq be an almost surely continuous centered Gaussian
process. Let Z = supyc7 X;. If
o’ = sup (E [XED ,
teT
then , ,
P{|Z — EZ| > u} < 2e"v/(279)
Proof: We may assume 7 = {1,...,n}. Let I be the covariance
matrix of X = (X1,...,X,). Let A = T2 If Y is a standard
normal vector, then
f(Y) = max (AY). & max X;
i=1,...,n i=1,...,n

By Cauchy-Schwarz,
1/2

|(Au); — (Av);|= ZAi,j (uj —vj)| < ZA?,J- llu—v]|

< oflu— v



beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not
available.

Solution: modified logarithmic Sobolev inequalities.
Suppose Xi,..., X, are independent. Let Z = f(Xy,...,X,)
and Z; = fi(XD) = fi(Xq, ..., Xi—1, Xig1y -« - » Xn).

Let ¢(x) = e* —x — 1. Then for all A € R,

AE [Ze)‘z} —E [e“} log E [e“}

< ZE [e*zqs (=XMZ - zi))} :

i=1

Michel Ledoux



the entropy method

Define Z; = inf,/ f(X1,...,x/,...,Xy,) and suppose

n

Y(@E-z)<v.

i=1

Then for all t > 0,

P{Z—FEZ >t} <e ¥/@),



the entropy method

Define Z; = inf,/ f(X1,...,x/,...,Xy,) and suppose

n

Y(Z-zZ)P<v.
i=1
Then for all t > 0,
P{Z—FEZ >t} <e ¥/@),

This implies the bounded differences inequality and much more.



example: the largest eigenvalue of a symmetric matrix
Let A = (Xij)nxn be symmetric, the X;; independent (i < j) with
|Xi,j| < 1. Let

Z=X1= sup u'Au.
u:||ul|=1

and suppose v is such that Z = vT Av.
A;; is obtained by replacing Xi; by x;;. Then

(Z—Zij)+< (vTAv - vTAi’,jv> 757,
— (VT(A — Ai/,j)v> ]]'Z>Zi,j <2 (ViVj(Xi,j — Xi/,j)>+
< 4|vv| .

Therefore,

n 2
Y (Z-7Z)F < D 16wy <16< ) =16.

1<i<j<n 1< <j<n i=1



example: convex lipschitz functions

Let f: [0,1]" = R be a convex function. Let
Z; = infy f(X1,...,x/,...,Xp) and let X! be the value of x! for
which the minimum is achleved Then, writing

i(') — (X17 . 7Xi—1?xi,’ Xi+1’ PR ,Xn),
i=1 i=

<Z< ) (Xi — X)?

(by convexity)

< ; (m."“)

= [[VE(X) I < L2




self-bounding functions

Suppose Z satisfies

n
0<Z-7Z<1 and » (Z-Z)<Z.
i=1
Recall that Var(Z) < EZ. We have much more:
IP){Z > REZ + t} S e—tz/(zEZ+2t/3)

and ,
P{Z < EZ — t} < e~ */(2E2)



self-bounding functions

Suppose Z satisfies
0<Z-7Z<1 and » (Z-Z)<Z.
i=1

Recall that Var(Z) < EZ. We have much more:
IP){Z > [EZ + t} S e—tz/(zEZ+2t/3)

and ,
P{Z < EZ — t} < e~ */(2E2)

Rademacher averages and the random VC dimension are self
bounding.



self-bounding functions

Suppose Z satisfies

0<Z-7Z<1 and » (Z-Z)<Z.
i=1

Recall that Var(Z) < EZ. We have much more:
IP){Z > [EZ + t} S e—tz/(zEZ+2t/3)

and ,
P{Z < EZ — t} < e~ */(2E2)

Rademacher averages and the random VC dimension are self
bounding.

Configuration functions.



weakly self-bounding functions

f: X" — [0, 00) is weakly (a, b)-self-bounding if there exist
fi : "1 — [0, 00) such that for all x € &™,

Zn: (f(x) — fi(x(i)))2 < af(x)+b.

i=1
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fi : "1 — [0, 00) such that for all x € &™,

Zn: (f(x) — fi(x(i)))2 < af(x)+b.
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Then

t2
P{Z>EZ+1t} < - .
{z=EZ+ }—exp< 2(aEZ+b+at/2))



weakly self-bounding functions

f: X" — [0, 00) is weakly (a, b)-self-bounding if there exist
fi : "1 — [0, 00) such that for all x € &™,

Zn: (f(x) — fi(x(i)))2 < af(x)+b.

i=1

Then

t2
P{Z>EZ+1t} < - .
{z=EZ+ }—exp< 2(aEZ+b+at/2))

If, in addition, f(x) — f;(x)) < 1, then for 0 < t < EZ,

t2
P{Z<EZ—t}<exp|— .
s }—eXp< 2(aEZ+b+c_t)>

where ¢ = (3a — 1)/6.



the isoperimetric view

Let X = (X1,...,X;,) have independent Es
components, taking values in X". Let |
ACAXx"

The Hamming distance of X to A is

n
d(X,A) = mind(X = mi Ly 2y -
(X,A) ;“6'{\‘ (X,y) %‘R; Xi 2y

Michel Talagrand



the isoperimetric view

Let X = (X1,...,X;,) have independent Es
components, taking values in X". Let |
ACAXx"

The Hamming distance of X to A is

n
d(X,A) = mind(X = mi Tx. 2y -
(X,A) ;“6'{\‘ (X,y) %‘R; Xiy;
Michel Talagrand
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the isoperimetric view

Let X = (X1,...,X;,) have independent Es
components, taking values in X". Let |
ACAXx"

The Hamming distance of X to A is

n
X,A) = mi X =mi Tyx.4y .«
d(X,A) = mind(X,y) ryrggi; Xisty
Michel Talagrand
n 1
P {d(X, A)>t+ = Iog} < e 2/n

Concentration of measure!



the isoperimetric view

Proof: By the bounded differences inequality,
P{Ed(X,A) — d(X,A) >t} < e~2¢/",
Taking t = Ed(X, A), we get

n 1
Ed(X,A) < /= log

By the bounded differences inequality again,

n 1 2
P{d(X,A) >t —1 < @ 2t%/n
{(, ) > +1/20gP{A}}_e




talagrand’s convex distance

The weighted Hamming distance is

da(x,A) = ;25\ da(x,y) = ;gglé;y |l

where a = (a1, ..., ap). The same argument as before gives

[|ex]|?
Prda(X,A) 2 t+ /7" log

This implies

_2t2 2
< e 2/l

IP’{A}} B

sup min (P{A},P{da(X,A) > t}) < e t/2.

aiflaf|=1



convex distance inequality

convex distance:

dr(x,A) = sup do(x,A) .
a€l0,00)[|al|=1

P{A}P {d7(X,A) >t} <e /4.



convex distance inequality

convex distance:

dr(x,A) = sup do(x,A) .
a€f0,00)":||al|=1
P{A}P {d7(X,A) >t} < e™/%.

Follows from the fact that dr(X, A)?2 is (4, 0) weakly self
bounding (by a saddle point representation of dr).

Talagrand’s original proof was different.



convex lipschitz functions
For A C [0,1]" and x € [0, 1]", define

D(x,A) = inf [lx —y]| -

If A is convex, then

D(x,A) < dt(x,A) .



convex lipschitz functions
For A C [0,1]" and x € [0, 1]", define

D(x,A) = inf [lx —y]| -

If A is convex, then
D(x,A) < dt(x,A) .
Proof:

D(x,A)= uem/\/tf(A) |[x —E, Y| (since A is convex)

n

. 2 .
< f Ey 1y.2y: is Yi 0,1
< g | 2 (Boan)” (e ¥s € [01)

n
= inf sup o;E, 1y 2y, (by Cauchy-Schwarz
VEM(A)a:HaHSl; Lz )

= dt(x,A) (by minimax theorem) .



convex lipschitz functions
Let X = (X1,...,X;,) have independent components taking
values in [0, 1]. Let f : [0,1]" — R be quasi-convex such that
f(x) — f(y)| < [Ix — y[|. Then

P{f(X) > Mf(X) + t} < 2e~*"/

and
P{f(X) < MF(X) — t} < 2e~%/4 .



convex lipschitz functions

Let X = (X1,...,X;,) have independent components taking
values in [0, 1]. Let f : [0,1]" — R be quasi-convex such that
f(x) — fF(Y)| < lIx — yl|. Then

P{f(X) > Mf(X) + t} < 2e~*"/

and
P{f(X) < MF(X) — t} < 2e~%/4 .

Proof: Let Ag = {x : f(x) < s} C [0,1]". A is convex. Since f
is Lipschitz,

f(x) < s+ D(x, As) < s+ dr(x, As)
By the convex distance inequality,
P{f(X) > s + t}P{f(X) < s} < e /%,

Take s = Mf(X) for the upper tail and s = Mf(X) — t for the
lower tail.
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