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what is learning theory?

A mathematical theory to understand the behavior of learning
algorithms and assist their design.

Ingredients:

Probability;

(Linear) algebra;

Optimization;

Complexity of algorithms;

High-dimensional geometry;

Statistics–hypothesis testing, regression, Bayesian methots, etc.

...
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learning theory

Statistical learning

supervised–classification, regression, ranking, ...

unsupervised–clustering, density estimation, ...

semi-unsupervised learning

active learning

online learning



statistical learning

How is it different from “classical” statistics?

Focus is on prediction rather than inference;

Distribution-free approach;

Non-asymptotic results are preferred;

High-dimensional problems;

Algorithmic aspects play a central role.

Here we focus on concentration inequalities.
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a binary classification problem

(X,Y) is a pair of random variables.

X ∈ X represents the observation

Y ∈ {−1, 1} is the (binary) label.

A classifier is a function X → {−1, 1} whose risk is

R(g) = P{g(X) 6= Y} .

training data: n i.i.d. observation/label pairs:

Dn = ((X1,Y1), . . . , (Xn,Yn))

The risk of a data-based classifier gn is

R(gn) = P{gn(X) 6= Y|Dn} .
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empirical risk minimization

Given a class C of classifiers, choose one that minimizes the
empirical risk:

gn = argmin
g∈C

Rn(g) = argmin
g∈C

1

n

n∑
i=1

1g(Xi)6=Yi

Fundamental questions:

How close is Rn(g) to R(g)?

How close is R(gn) to ming∈C R(g)?

How close is R(gn) to Rn(gn)?
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empirical risk minimization

To understand |Rn(g)− R(g)|, we need to study deviations of
empirical averages from their means.

For the other two, note that

|R(gn)− Rn(gn)| ≤ sup
g∈C
|R(g)− Rn(g)|

and

R(gn)−min
g∈C

R(g) = (R(gn)− Rn(gn)) +

(
Rn(gn)−min

g∈C
R(g)

)
≤ 2 sup

g∈C
|R(g)− Rn(g)|

We need to understand uniform deviations of empirical averages
from their means.
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markov’s inequality
If Z ≥ 0, then

P{Z > t} ≤
EZ

t
.

This implies Chebyshev’s inequality: if Z has a finite variance
Var(Z) = E(Z− EZ)2, then

P{|Z− EZ| > t} = P{(Z− EZ)2 > t2} ≤
Var(Z)

t2
.

Andrey Markov (1856–1922)
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sums of independent random variables
Let X1, . . . ,Xn be independent real-valued and let Z =

∑n
i=1 Xi.

By independence, Var(Z) =
∑n

i=1 Var(Xi). If they are identically
distributed, Var(Z) = nVar(X1), so

P

{∣∣∣∣∣
n∑

i=1

Xi − nEX1

∣∣∣∣∣ > t

}
≤

nVar(X1)

t2
.

Equivalently,

P

{∣∣∣∣∣
n∑

i=1

Xi − nEX1

∣∣∣∣∣ > t
√

n

}
≤

Var(X1)

t2
.

Typical deviations are at most of the order
√

n.

Pafnuty Chebyshev (1821–1894)
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chernoff bounds

By the central limit theorem,

lim
n→∞

P

{
n∑

i=1

Xi − nEX1 > t
√

n

}
= 1−Ψ(t/

√
Var(X1))

≤ e−t2/(2Var(X1))

so we expect an exponential decrease in t2/Var(X1).

Trick: use Markov’s inequality in a more clever way: if λ > 0,

P{Z− EZ > t} = P
{

eλ(Z−EZ) > eλt
}
≤

Eeλ(Z−EZ)

eλt

Now derive bounds for the moment generating function Eeλ(Z−EZ)

and optimize λ.
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chernoff bounds

If Z =
∑n

i=1 Xi is a sum of independent random variables,

EeλZ = E
n∏

i=1

eλXi =
n∏

i=1

EeλXi

by independence. Now it suffices to find bounds for EeλXi .

Serguei Bernstein (1880-1968) Herman Chernoff (1923–)
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hoeffding’s inequality

If X1, . . . ,Xn ∈ [0, 1], then

Eeλ(Xi−EXi) ≤ eλ
2/8 .

We obtain

P

{∣∣∣∣∣1n
n∑

i=1

Xi − E

[
1

n

n∑
i=1

Xi

]∣∣∣∣∣ > t

}
≤ 2e−2nt2

Wassily Hoeffding (1914–1991)
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bernstein’s inequality

Hoeffding’s inequality is distribution free. It does not take variance
information into account.
Bernstein’s inequality is an often useful variant:
Let X1, . . . ,Xn be independent such that Xi ≤ 1. Let
v =

∑n
i=1 E

[
X2

i

]
. Then

P

{
n∑

i=1

(Xi − EXi) ≥ t

}
≤ exp

(
−

t2

2(v + t/3)

)
.



a maximal inequality

Suppose Y1, . . . ,YN are sub-Gaussian in the sense that

EeλYi ≤ eλ
2σ2/2 .

Then
E max

i=1,...,N
Yi ≤ σ

√
2 log N .

Proof:

eλE maxi=1,...,N Yi ≤ Eeλmaxi=1,...,N Yi ≤
N∑

i=1

EeλYi ≤ Neλ
2σ2/2

Take logarithms, and optimize in λ.
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uniform deviations–finite classes

Let A1, . . . ,AN ⊂ X and let X1, . . . ,Xn be i.i.d. random points
in X . Let

P(A) = P{X1 ∈ A} and Pn(A) =
1

n

n∑
i=1

1Xi∈A

By Hoeffding’s inequality, for each A,

Eeλ(P(A)−Pn(A))= Ee(λ/n)
∑n

i=1(P(A)−1Xi∈A)

=
n∏

i=1

Ee(λ/n)(P(A)−1Xi∈A) ≤ eλ
2/(8n) .

By the maximal inequality,

E max
j=1,...,N

(P(Aj)− Pn(Aj)) ≤
√

log N

2n
.



johnson-lindenstrauss

Suppose A = {a1, . . . , an} ⊂ RD is a finite set, D is large.

We would like to embed A in Rd where d� D.

Is this possible? In what sense?

Given ε > 0, a function f : RD → Rd is an ε-isometry if for all
a, a′ ∈ A,

(1− ε)
∥∥a− a′

∥∥2 ≤
∥∥f(a)− f(a′)

∥∥2 ≤ (1 + ε)
∥∥a− a′

∥∥2
.

Johnson-Lindenstrauss lemma: If d ≥ (c/ε2) log n, then there
exists an ε-isometry f : RD → Rd.

Independent of D!
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random projections

We take f to be linear. How? At random!

Let f = (Wi,j)d×D with

Wi,j =
1
√

d
Xi,j

where the Xi,j are independent standard normal.

For any a = (α1, . . . , αD) ∈ RD,

E‖f(a)‖2 =
1

d

d∑
i=1

D∑
j=1

α2
j EX2

i,j = ‖a‖2 .

The expected squared distances are preserved!
‖f(a)‖2/‖a‖2 is a weighted sum of squared normals.
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random projections

Let b = ai − aj for some ai, aj ∈ A. Then

P

∃b :

∣∣∣∣∣‖f(b)‖2

‖b‖2
− 1

∣∣∣∣∣ >
√

8 log(n/
√
δ)

d
+

8 log(n/
√
δ)

d


≤
(

n

2

)
P


∣∣∣∣∣‖f(b)‖2

‖b‖2
− 1

∣∣∣∣∣ >
√

8 log(n/
√
δ)

d
+

8 log(n/
√
δ)

d


≤ δ (by a Bernstein-type inequality) .

If d ≥ (c/ε2) log(n/
√
δ), then√

8 log(n/
√
δ)

d
+

8 log(n/
√
δ)

d
≤ ε

and f is an ε-isometry with probability ≥ 1− δ.



martingale representation

X1, . . . ,Xn are independent random variables taking values in
some set X . Let f : X n → R and

Z = f(X1, . . . ,Xn) .

Denote Ei[·] = E[·|X1, . . . ,Xi]. Thus, E0Z = EZ and EnZ = Z.

Writing

∆i = EiZ− Ei−1Z ,

we have

Z− EZ =
n∑

i=1

∆i

This is the Doob martingale
representation of Z. Joseph Leo Doob (1910–2004)
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martingale representation: the variance

Var (Z) = E

( n∑
i=1

∆i

)2
 =

n∑
i=1

E
[
∆2

i

]
+ 2

∑
j>i

E∆i∆j .

Now if j > i, Ei∆j = 0, so

Ei∆j∆i = ∆iEi∆j = 0 ,

We obtain

Var (Z) = E

( n∑
i=1

∆i

)2
 =

n∑
i=1

E
[
∆2

i

]
.

From this, using independence, it is easy derive the Efron-Stein
inequality.
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efron-stein inequality (1981)

Let X1, . . . ,Xn be independent random variables taking values in
X . Let f : X n → R and Z = f(X1, . . . ,Xn).
Then

Var(Z) ≤ E
n∑

i=1

(Z− E(i)Z)2 = E
n∑

i=1

Var(i)(Z) .

where E(i)Z is expectation with respect to the i-th variable Xi only.

We obtain more useful forms by using that

Var(X) =
1

2
E(X− X′)2 and Var(X) ≤ E(X− a)2

for any constant a.
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efron-stein inequality (1981)

If X′1, . . . ,X′n are independent copies of X1, . . . ,Xn, and

Z′i = f(X1, . . . ,Xi−1,X′i ,Xi+1, . . . ,Xn),

then

Var(Z) ≤
1

2
E

[
n∑

i=1

(Z− Z′i )
2

]
Z is concentrated if it doesn’t depend too much on any of its
variables.

If Z =
∑n

i=1 Xi then we have an equality. Sums are the “least
concentrated” of all functions!
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efron-stein inequality (1981)

If for some arbitrary functions fi

Zi = fi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn) ,

then

Var(Z) ≤ E

[
n∑

i=1

(Z− Zi)
2

]



efron, stein, and steele

Bradley Efron Charles Stein Mike Steele



example: uniform deviations

Let A be a collection of subsets of X , and let X1, . . . ,Xn be n
random points in X drawn i.i.d.
Let

P(A) = P{X1 ∈ A} and Pn(A) =
1

n

n∑
i=1

1Xi∈A

If Z = supA∈A |P(A)− Pn(A)|,

Var(Z) ≤
1

2n

regardless of the distribution and the richness of A.
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example: kernel density estimation
Let X1, . . . ,Xn be i.i.d. real samples drawn according to some
density φ. The kernel density estimate is

φn(x) =
1

nh

n∑
i=1

K

(
x− Xi

h

)
,

where h > 0, and K is a nonnegative “kernel”
∫

K = 1. The L1

error is

Z = f(X1, . . . ,Xn) =

∫
|φ(x)− φn(x)|dx .

It is easy to see that

|f(x1, . . . , xn)− f(x1, . . . , x′i , . . . , xn)|

≤
1

nh

∫ ∣∣∣∣K(x− xi

h

)
− K

(
x− x′i

h

)∣∣∣∣ dx ≤
2

n
,

so we get Var(Z) ≤
2

n
.
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h

)
,

where h > 0, and K is a nonnegative “kernel”
∫

K = 1. The L1

error is

Z = f(X1, . . . ,Xn) =

∫
|φ(x)− φn(x)|dx .

It is easy to see that

|f(x1, . . . , xn)− f(x1, . . . , x′i , . . . , xn)|

≤
1

nh

∫ ∣∣∣∣K(x− xi

h

)
− K

(
x− x′i

h

)∣∣∣∣ dx ≤
2

n
,

so we get Var(Z) ≤
2

n
.



bounding the expectation

Let P′n(A) = 1
n

∑n
i=1 1X′i∈A and let E′ denote expectation only

with respect to X′1, . . . ,X′n.

E sup
A∈A
|Pn(A)− P(A)|= E sup

A∈A
|E′[Pn(A)− P′n(A)]|

≤ E sup
A∈A
|Pn(A)− P′n(A)|=

1

n
E sup

A∈A

∣∣∣∣∣
n∑

i=1

(1Xi∈A − 1X′i∈A)

∣∣∣∣∣

Second symmetrization: if ε1, . . . , εn are independent
Rademacher variables, then

=
1

n
E sup

A∈A

∣∣∣∣∣
n∑

i=1

εi(1Xi∈A − 1X′i∈A)

∣∣∣∣∣≤ 2

n
E sup

A∈A

∣∣∣∣∣
n∑

i=1

εi1Xi∈A

∣∣∣∣∣
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conditional rademacher average

If

Rn = Eε sup
A∈A

∣∣∣∣∣
n∑

i=1

εi1Xi∈A

∣∣∣∣∣
then

E sup
A∈A
|Pn(A)− P(A)| ≤

2

n
ERn .

Rn is a data-dependent quantity!
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concentration of conditional rademacher average

Define

R(i)
n = Eε sup

A∈A

∣∣∣∣∣∣
∑
j6=i

εj1Xj∈A

∣∣∣∣∣∣
One can show easily that

0 ≤ Rn − R(i)
n ≤ 1 and

n∑
i=1

(Rn − R(i)
n ) ≤ Rn .

By the Efron-Stein inequality,

Var(Rn) ≤ E
n∑

i=1

(Rn − R(i)
n )2 ≤ ERn .

Standard deviation is at most
√
ERn!

Such functions are called self-bounding.
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bounding the conditional rademacher average

If S(Xn
1,A) is the number of different sets of form

{X1, . . . ,Xn} ∩ A : A ∈ A

then Rn is the maximum of S(Xn
1,A) sub-Gaussian random

variables. By the maximal inequality,

1

2
Rn ≤

√
log S(Xn

1,A)

2n
.

In particular,

E sup
A∈A
|Pn(A)− P(A)| ≤ 2E

√
log S(Xn

1,A)

2n
.



bounding the conditional rademacher average

If S(Xn
1,A) is the number of different sets of form

{X1, . . . ,Xn} ∩ A : A ∈ A

then Rn is the maximum of S(Xn
1,A) sub-Gaussian random

variables. By the maximal inequality,

1

2
Rn ≤

√
log S(Xn

1,A)

2n
.

In particular,

E sup
A∈A
|Pn(A)− P(A)| ≤ 2E

√
log S(Xn

1,A)

2n
.



random VC dimension

Let V = V(xn
1,A) be the size of the largest subset of

{x1, . . . , xn} shattered by A.
By Sauer’s lemma,

log S(Xn
1,A) ≤ V(Xn

1,A) log(n + 1) .

V is also self-bounding:

n∑
i=1

(V − V(i))2 ≤ V

so by Efron-Stein,
Var(V) ≤ EV
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vapnik and chervonenkis

Vladimir Vapnik Alexey Chervonenkis



beyond the variance

X1, . . . ,Xn are independent random variables taking values in
some set X . Let f : X n → R and Z = f(X1, . . . ,Xn). Recall the
Doob martingale representation:

Z− EZ =
n∑

i=1

∆i where ∆i = EiZ− Ei−1Z ,

with Ei[·] = E[·|X1, . . . ,Xi].

To get exponential inequalities, we bound the moment generating
function Eeλ(Z−EZ).



azuma’s inequality

Suppose that the martingale differences are bounded: |∆i| ≤ ci.
Then

Eeλ(Z−EZ)= Eeλ(
∑n

i=1 ∆i) = EEne
λ
(∑n−1

i=1 ∆i

)
+λ∆n

= Ee
λ
(∑n−1

i=1 ∆i

)
Eneλ∆n

≤ Ee
λ
(∑n−1

i=1 ∆i

)
eλ

2c2
n/2 (by Hoeffding)

· · ·

≤ eλ
2(
∑n

i=1 c2
i )/2 .

This is the Azuma-Hoeffding inequality for sums of bounded
martingale differences.



bounded differences inequality
If Z = f(X1, . . . ,Xn) and f is such that

|f(x1, . . . , xn)− f(x1, . . . , x′i , . . . , xn)| ≤ ci

then the martingale differences are bounded.

Bounded differences inequality: if X1, . . . ,Xn are independent,
then

P{|Z− EZ| > t} ≤ 2e−2t2/
∑n

i=1 c2
i .

McDiarmid’s inequality.

Colin McDiarmid
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hoeffding in a hilbert space
Let X1, . . . ,Xn be independent zero-mean random variables in a
separable Hilbert space such that ‖Xi‖ ≤ c/2 and denote
v = nc2/4. Then, for all t ≥

√
v,

P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t

}
≤ e−(t−

√
v)2/(2v) .

Proof: By the triangle inequality,
∥∥∑n

i=1 Xi

∥∥ has the bounded
differences property with constants c, so

P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t

}
= P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t− E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
}

≤ exp

(
−
(
t− E

∥∥∑n
i=1 Xi

∥∥)2

2v

)
.

Also,

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≤
√√√√E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

=

√√√√ n∑
i=1

E ‖Xi‖2 ≤
√

v .
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bounded differences inequality

Easy to use.

Distribution free.

Often close to optimal (e.g., L1 error of kernel density
estimate).

Does not exploit “variance information.”

Often too rigid.

Other methods are necessary.



shannon entropy

If X,Y are random variables taking
values in a set of size N,

H(X) = −
∑

x

p(x) log p(x)

H(X|Y)= H(X,Y)− H(Y)

= −
∑
x,y

p(x, y) log p(x|y)

H(X) ≤ log N and H(X|Y) ≤ H(X)

Claude Shannon
(1916–2001)



han’s inequality

Te Sun Han

If X = (X1, . . . ,Xn) and
X(i) = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn), then

n∑
i=1

(
H(X)− H(X(i))

)
≤ H(X)

Proof:

H(X)= H(X(i)) + H(Xi|X(i))

≤ H(X(i)) + H(Xi|X1, . . . ,Xi−1)

Since
∑n

i=1 H(Xi|X1, . . . ,Xi−1) = H(X), summing
the inequality, we get

(n− 1)H(X) ≤
n∑

i=1

H(X(i)) .



subadditivity of entropy

The entropy of a random variable Z ≥ 0 is

Ent(Z) = EΦ(Z)− Φ(EZ)

where Φ(x) = x log x. By Jensen’s inequality, Ent(Z) ≥ 0.

Han’s inequality implies the following sub-additivity property.
Let X1, . . . ,Xn be independent and let Z = f(X1, . . . ,Xn),
where f ≥ 0.
Denote

Ent(i)(Z) = E(i)Φ(Z)− Φ(E(i)Z)

Then

Ent(Z) ≤ E
n∑

i=1

Ent(i)(Z) .
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a logarithmic sobolev inequality on the hypercube

Let X = (X1, . . . ,Xn) be uniformly distributed over {−1, 1}n. If
f : {−1, 1}n → R and Z = f(X),

Ent(Z2) ≤
1

2
E

n∑
i=1

(Z− Z′i )
2

The proof uses subadditivity of the entropy and calculus for the
case n = 1.

Implies Efron-Stein and the edge-isoperimetric inequality.



herbst’s argument: exponential concentration

If f : {−1, 1}n → R, the log-Sobolev inequality may be used with

g(x) = eλf(x)/2 where λ ∈ R .

If F(λ) = EeλZ is the moment generating function of Z = f(X),

Ent(g(X)2)= λE
[
ZeλZ

]
− E

[
eλZ
]

log E
[
ZeλZ

]
= λF′(λ)− F(λ) log F(λ) .

Differential inequalities are obtained for F(λ).



herbst’s argument

As an example, suppose f is such that
∑n

i=1(Z− Z′i )
2
+ ≤ v. Then

by the log-Sobolev inequality,

λF′(λ)− F(λ) log F(λ) ≤
vλ2

4
F(λ)

If G(λ) = log F(λ), this becomes(
G(λ)

λ

)′
≤

v

4
.

This can be integrated: G(λ) ≤ λEZ + λv/4, so

F(λ) ≤ eλEZ−λ2v/4

This implies

P{Z > EZ + t} ≤ e−t2/v

Stronger than the bounded differences inequality!
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gaussian log-sobolev and concentration inequalities

Let X = (X1, . . . ,Xn) be a vector of i.i.d. standard normal If
f : Rn → R and Z = f(X),

Ent(Z2) ≤ 2E
[
‖∇f(X)‖2

]
This can be proved using the central limit theorem and the
Bernoulli log-Sobolev inequality.

It implies the Gaussian concentration inequality:
Suppose f is Lipschitz: for all x, y ∈ Rn,

|f(x)− f(y)| ≤ L‖x− y‖ .

Then, for all t > 0,

P {f(X)− Ef(X) ≥ t} ≤ e−t2/(2L2) .
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an application: supremum of a gaussian process
Let (Xt)t∈T be an almost surely continuous centered Gaussian
process. Let Z = supt∈T Xt. If

σ2 = sup
t∈T

(
E
[
X2

t

])
,

then
P {|Z− EZ| ≥ u} ≤ 2e−u2/(2σ2)

Proof: We may assume T = {1, ..., n}. Let Γ be the covariance
matrix of X = (X1, . . . ,Xn). Let A = Γ1/2. If Y is a standard
normal vector, then

f(Y) = max
i=1,...,n

(AY)i
distr.

= max
i=1,...,n

Xi

By Cauchy-Schwarz,

|(Au)i − (Av)i|=

∣∣∣∣∣∣
∑

j

Ai,j (uj − vj)

∣∣∣∣∣∣ ≤
∑

j

A2
i,j

1/2

‖u− v‖

≤ σ‖u− v‖
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beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not
available.

Solution: modified logarithmic Sobolev inequalities.
Suppose X1, . . . ,Xn are independent. Let Z = f(X1, . . . ,Xn)
and Zi = fi(X(i)) = fi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn).

Let φ(x) = ex − x− 1. Then for all λ ∈ R,

λE
[
ZeλZ

]
− E

[
eλZ
]

log E
[
eλZ
]

≤
n∑

i=1

E
[
eλZφ (−λ(Z− Zi))

]
.

Michel Ledoux



the entropy method

Define Zi = infx′i
f(X1, . . . , x′i , . . . ,Xn) and suppose

n∑
i=1

(Z− Zi)
2 ≤ v .

Then for all t > 0,

P {Z− EZ > t} ≤ e−t2/(2v) .

This implies the bounded differences inequality and much more.
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n∑
i=1

(Z− Zi)
2 ≤ v .
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example: the largest eigenvalue of a symmetric matrix
Let A = (Xi,j)n×n be symmetric, the Xi,j independent (i ≤ j) with
|Xi,j| ≤ 1. Let

Z = λ1 = sup
u:‖u‖=1

uTAu .

and suppose v is such that Z = vTAv.
A′i,j is obtained by replacing Xi,j by x′i,j. Then

(Z− Zi,j)+≤
(

vTAv − vTA′i,jv
)
1Z>Zi,j

=
(

vT(A− A′i,j)v
)
1Z>Zi,j ≤ 2

(
vivj(Xi,j − X′i,j)

)
+

≤ 4|vivj| .

Therefore,

∑
1≤i≤j≤n

(Z− Z′i,j)
2
+ ≤

∑
1≤i≤j≤n

16|vivj|2 ≤ 16

(
n∑

i=1

v2
i

)2

= 16 .



example: convex lipschitz functions

Let f : [0, 1]n → R be a convex function. Let
Zi = infx′i

f(X1, . . . , x′i , . . . ,Xn) and let X′i be the value of x′i for
which the minimum is achieved. Then, writing

X
(i)

= (X1, . . . ,Xi−1,X′i ,Xi+1, . . . ,Xn),

n∑
i=1

(Z− Zi)
2=

n∑
i=1

(f(X)− f(X
(i)

)2

≤
n∑

i=1

(
∂f

∂xi
(X)

)2

(Xi − X′i )
2

(by convexity)

≤
n∑

i=1

(
∂f

∂xi
(X)

)2

= ‖∇f(X)‖2 ≤ L2 .



self-bounding functions

Suppose Z satisfies

0 ≤ Z− Zi ≤ 1 and
n∑

i=1

(Z− Zi) ≤ Z .

Recall that Var(Z) ≤ EZ. We have much more:

P{Z > EZ + t} ≤ e−t2/(2EZ+2t/3)

and
P{Z < EZ− t} ≤ e−t2/(2EZ)

Rademacher averages and the random VC dimension are self
bounding.

Configuration functions.



self-bounding functions

Suppose Z satisfies

0 ≤ Z− Zi ≤ 1 and
n∑

i=1

(Z− Zi) ≤ Z .

Recall that Var(Z) ≤ EZ. We have much more:

P{Z > EZ + t} ≤ e−t2/(2EZ+2t/3)

and
P{Z < EZ− t} ≤ e−t2/(2EZ)

Rademacher averages and the random VC dimension are self
bounding.

Configuration functions.



self-bounding functions

Suppose Z satisfies

0 ≤ Z− Zi ≤ 1 and
n∑

i=1

(Z− Zi) ≤ Z .

Recall that Var(Z) ≤ EZ. We have much more:

P{Z > EZ + t} ≤ e−t2/(2EZ+2t/3)

and
P{Z < EZ− t} ≤ e−t2/(2EZ)

Rademacher averages and the random VC dimension are self
bounding.

Configuration functions.



weakly self-bounding functions

f : X n → [0,∞) is weakly (a, b)-self-bounding if there exist
fi : X n−1 → [0,∞) such that for all x ∈ X n,

n∑
i=1

(
f(x)− fi(x(i))

)2
≤ af(x) + b .

Then

P {Z ≥ EZ + t} ≤ exp

(
−

t2

2 (aEZ + b + at/2)

)
.

If, in addition, f(x)− fi(x(i)) ≤ 1, then for 0 < t ≤ EZ,

P {Z ≤ EZ− t} ≤ exp

(
−

t2

2 (aEZ + b + c−t)

)
.

where c = (3a− 1)/6.
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the isoperimetric view

Let X = (X1, . . . ,Xn) have independent
components, taking values in X n. Let
A ⊂ X n.
The Hamming distance of X to A is

d(X,A) = min
y∈A

d(X, y) = min
y∈A

n∑
i=1

1Xi 6=yi .

Michel Talagrand

P

{
d(X,A) ≥ t +

√
n

2
log

1

P[A]

}
≤ e−2t2/n .

Concentration of measure!
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the isoperimetric view

Proof: By the bounded differences inequality,

P{Ed(X,A)− d(X,A) ≥ t} ≤ e−2t2/n.

Taking t = Ed(X,A), we get

Ed(X,A) ≤

√
n

2
log

1

P{A}
.

By the bounded differences inequality again,

P

{
d(X,A) ≥ t +

√
n

2
log

1

P{A}

}
≤ e−2t2/n



talagrand’s convex distance

The weighted Hamming distance is

dα(x,A) = inf
y∈A

dα(x, y) = inf
y∈A

∑
i:xi 6=yi

|αi|

where α = (α1, . . . , αn). The same argument as before gives

P

{
dα(X,A) ≥ t +

√
‖α‖2

2
log

1

P{A}

}
≤ e−2t2/‖α‖2

,

This implies

sup
α:‖α‖=1

min (P{A}, P {dα(X,A) ≥ t}) ≤ e−t2/2 .



convex distance inequality

convex distance:

dT(x,A) = sup
α∈[0,∞)n:‖α‖=1

dα(x,A) .

P{A}P {dT(X,A) ≥ t} ≤ e−t2/4 .

Follows from the fact that dT(X,A)2 is (4, 0) weakly self
bounding (by a saddle point representation of dT).

Talagrand’s original proof was different.
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convex lipschitz functions
For A ⊂ [0, 1]n and x ∈ [0, 1]n, define

D(x,A) = inf
y∈A
‖x− y‖ .

If A is convex, then

D(x,A) ≤ dT(x,A) .

Proof:

D(x,A)= inf
ν∈M(A)

‖x− EνY‖ (since A is convex)

≤ inf
ν∈M(A)

√√√√ n∑
j=1

(
Eν1xj 6=Yj

)2
(since xj,Yj ∈ [0, 1])

= inf
ν∈M(A)

sup
α:‖α‖≤1

n∑
j=1

αjEν1xj 6=Yj (by Cauchy-Schwarz)

= dT(x,A) (by minimax theorem) .
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convex lipschitz functions
Let X = (X1, . . . ,Xn) have independent components taking
values in [0, 1]. Let f : [0, 1]n → R be quasi-convex such that
|f(x)− f(y)| ≤ ‖x− y‖. Then

P{f(X) > Mf(X) + t} ≤ 2e−t2/4

and
P{f(X) < Mf(X)− t} ≤ 2e−t2/4 .

Proof: Let As = {x : f(x) ≤ s} ⊂ [0, 1]n. As is convex. Since f
is Lipschitz,

f(x) ≤ s + D(x,As) ≤ s + dT(x,As) ,

By the convex distance inequality,

P{f(X) ≥ s + t}P{f(X) ≤ s} ≤ e−t2/4 .

Take s = Mf(X) for the upper tail and s = Mf(X)− t for the
lower tail.
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