Lectures on learning theory

Gábor Lugosi
ICREA and Pompeu Fabra University
Barcelona

what is learning theory?

A mathematical theory to understand the behavior of learning algorithms and assist their design.

what is learning theory?

A mathematical theory to understand the behavior of learning algorithms and assist their design.

Ingredients:

* Probability;
* (Linear) algebra;
* Optimization;

类 Complexity of algorithms;

* High-dimensional geometry;

类 Statistics-hypothesis testing, regression, Bayesian methots, etc.

* ...

learning theory

Statistical learning
supervised-classification, regression, ranking, ...
unsupervised-clustering, density estimation, ...
semi-unsupervised learning
active learning
online learning

statistical learning

How is it different from "classical" statistics?

* Focus is on prediction rather than inference;

类 Distribution-free approach;

* Non-asymptotic results are preferred;
* High-dimensional problems;
* Algorithmic aspects play a central role.

statistical learning

How is it different from "classical" statistics?

* Focus is on prediction rather than inference;
* Distribution-free approach;

类 Non-asymptotic results are preferred;

* High-dimensional problems;
* Algorithmic aspects play a central role.

Here we focus on concentration inequalities.

a binary classification problem

(X, Y) is a pair of random variables.
$\mathbf{X} \in \mathbf{X}$ represents the observation
$\mathrm{Y} \in\{-1,1\}$ is the (binary) label.
A classifier is a function $\mathcal{X} \rightarrow\{-1,1\}$ whose risk is

$$
\mathrm{R}(\mathrm{~g})=\mathbb{P}\{\mathrm{g}(\mathrm{X}) \neq \mathrm{Y}\}
$$

a binary classification problem

(X, Y) is a pair of random variables.
$\mathbf{X} \in \mathbf{X}$ represents the observation
$\mathrm{Y} \in\{-1,1\}$ is the (binary) label.
A classifier is a function $\mathcal{X} \rightarrow\{-1,1\}$ whose risk is

$$
\mathrm{R}(\mathrm{~g})=\mathbb{P}\{\mathrm{g}(\mathrm{X}) \neq \mathrm{Y}\}
$$

training data: \mathbf{n} i.i.d. observation/label pairs:

$$
D_{n}=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)
$$

The risk of a data-based classifier $\mathbf{g}_{\mathbf{n}}$ is

$$
R\left(g_{n}\right)=\mathbb{P}\left\{g_{n}(X) \neq Y \mid D_{n}\right\}
$$

empirical risk minimization

Given a class \mathcal{C} of classifiers, choose one that minimizes the empirical risk:

$$
g_{\mathrm{n}}=\underset{\mathrm{g} \in \mathcal{C}}{\operatorname{argmin}} \mathrm{R}_{\mathrm{n}}(\mathrm{~g})=\underset{\mathrm{g} \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbb{1}_{\mathrm{g}\left(\mathrm{X}_{\mathrm{i}}\right) \neq \mathbf{Y}_{\mathrm{i}}}
$$

empirical risk minimization

Given a class \mathcal{C} of classifiers, choose one that minimizes the empirical risk:

$$
g_{n}=\underset{g \in \mathcal{C}}{\operatorname{argmin}} R_{n}(g)=\underset{g \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{g\left(X_{i}\right) \neq Y_{i}}
$$

Fundamental questions:

* How close is $\mathbf{R}_{\mathrm{n}}(\mathrm{g})$ to $\mathbf{R}(\mathrm{g})$?
* How close is $\mathbf{R}\left(\mathrm{g}_{\mathrm{n}}\right)$ to $\min _{\mathrm{g} \in \mathcal{C}} \mathrm{R}(\mathrm{g})$?
* How close is $\mathbf{R}\left(\mathrm{g}_{\mathrm{n}}\right)$ to $\mathbf{R}_{\mathrm{n}}\left(\mathrm{g}_{\mathrm{n}}\right)$?

empirical risk minimization

To understand $\left|\mathbf{R}_{\mathbf{n}}(\mathbf{g})-\mathbf{R}(\mathbf{g})\right|$, we need to study deviations of empirical averages from their means.

For the other two, note that

$$
\left|\mathbf{R}\left(\mathbf{g}_{\mathrm{n}}\right)-\mathbf{R}_{\mathrm{n}}\left(\mathrm{~g}_{\mathrm{n}}\right)\right| \leq \sup _{\mathrm{g} \in \mathcal{C}}\left|\mathbf{R}(\mathrm{~g})-\mathbf{R}_{\mathrm{n}}(\mathrm{~g})\right|
$$

and

$$
\begin{aligned}
R\left(g_{n}\right)-\min _{g \in \mathcal{C}} R(g) & =\left(R\left(g_{n}\right)-R_{n}\left(g_{n}\right)\right)+\left(R_{n}\left(g_{n}\right)-\min _{g \in \mathcal{C}} R(g)\right) \\
& \leq 2 \sup _{g \in \mathcal{C}}\left|R(g)-R_{n}(g)\right|
\end{aligned}
$$

empirical risk minimization

To understand $\left|\mathbf{R}_{\mathbf{n}}(\mathbf{g})-\mathbf{R}(\mathbf{g})\right|$, we need to study deviations of empirical averages from their means.

For the other two, note that

$$
\left|\mathbf{R}\left(\mathbf{g}_{\mathrm{n}}\right)-\mathbf{R}_{\mathrm{n}}\left(\mathrm{~g}_{\mathrm{n}}\right)\right| \leq \sup _{\mathrm{g} \in \mathcal{C}}\left|\mathbf{R}(\mathrm{~g})-\mathbf{R}_{\mathrm{n}}(\mathrm{~g})\right|
$$

and

$$
\begin{aligned}
R\left(g_{n}\right)-\min _{g \in \mathcal{C}} R(g) & =\left(R\left(g_{n}\right)-R_{n}\left(g_{n}\right)\right)+\left(R_{n}\left(g_{n}\right)-\min _{g \in \mathcal{C}} R(g)\right) \\
& \leq 2 \sup _{g \in \mathcal{C}}\left|R(g)-\mathbf{R}_{\mathbf{n}}(g)\right|
\end{aligned}
$$

We need to understand uniform deviations of empirical averages from their means.

markov's inequality

If $\mathbf{Z} \geq \mathbf{0}$, then

$$
\mathbb{P}\{\mathbf{Z}>\mathrm{t}\} \leq \frac{\mathbb{E} \mathbf{Z}}{\mathrm{t}} .
$$

markov's inequality

If $\mathbf{Z} \geq \mathbf{0}$, then

$$
\mathbb{P}\{\mathbf{Z}>\mathrm{t}\} \leq \frac{\mathbb{E} \mathbf{Z}}{\mathrm{t}} .
$$

This implies Chebyshev's inequality: if \mathbf{Z} has a finite variance $\operatorname{Var}(\mathbf{Z})=\mathbb{E}(\mathbf{Z}-\mathbb{E} \mathbf{Z})^{2}$, then

$$
\mathbb{P}\{|\mathbf{Z}-\mathbb{E} \mathbf{Z}|>\mathbf{t}\}=\mathbb{P}\left\{(\mathbf{Z}-\mathbb{E} \mathbf{Z})^{2}>\mathbf{t}^{2}\right\} \leq \frac{\operatorname{Var}(\mathbf{Z})}{\mathbf{t}^{2}}
$$

markov's inequality

If $\mathbf{Z} \geq \mathbf{0}$, then

$$
\mathbb{P}\{\mathbf{Z}>\mathrm{t}\} \leq \frac{\mathbb{E} \mathbf{Z}}{\mathrm{t}} .
$$

This implies Chebyshev's inequality: if \mathbf{Z} has a finite variance $\operatorname{Var}(\mathbf{Z})=\mathbb{E}(\mathbf{Z}-\mathbb{E} \mathbf{Z})^{2}$, then

$$
\mathbb{P}\{|\mathbf{Z}-\mathbb{E} \mathbf{Z}|>\mathbf{t}\}=\mathbb{P}\left\{(\mathbf{Z}-\mathbb{E} \mathbf{Z})^{2}>\mathbf{t}^{2}\right\} \leq \frac{\operatorname{Var}(\mathbf{Z})}{\mathbf{t}^{2}} .
$$

Andrey Markov (1856-1922)

sums of independent random variables

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent real-valued and let $\mathbf{Z}=\sum_{i=1}^{n} \mathbf{X}_{\mathbf{i}}$. By independence, $\operatorname{Var}(\mathbf{Z})=\sum_{i=1}^{n} \operatorname{Var}\left(\mathbf{X}_{\mathbf{i}}\right)$. If they are identically distributed, $\operatorname{Var}(\mathbf{Z})=n \operatorname{Var}\left(\mathbf{X}_{1}\right)$, so

$$
\mathbb{P}\left\{\left|\sum_{i=1}^{\mathbf{n}} \mathbf{X}_{\mathbf{i}}-\mathbf{n} \mathbb{E} \mathbf{X}_{1}\right|>\mathbf{t}\right\} \leq \frac{\mathbf{n} \operatorname{Var}\left(\mathbf{X}_{1}\right)}{\mathbf{t}^{2}}
$$

Equivalently,

$$
\mathbb{P}\left\{\left|\sum_{i=1}^{n} \mathbf{X}_{\mathbf{i}}-\mathbf{n} \mathbb{E} \mathbf{X}_{1}\right|>\mathbf{t} \sqrt{\mathbf{n}}\right\} \leq \frac{\operatorname{Var}\left(\mathbf{X}_{1}\right)}{\mathbf{t}^{2}}
$$

Typical deviations are at most of the order $\sqrt{\mathbf{n}}$.

sums of independent random variables

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent real-valued and let $\mathbf{Z}=\sum_{i=1}^{n} \mathbf{X}_{\mathbf{i}}$. By independence, $\operatorname{Var}(\mathbf{Z})=\sum_{i=1}^{n} \operatorname{Var}\left(\mathbf{X}_{\mathbf{i}}\right)$. If they are identically distributed, $\operatorname{Var}(\mathbf{Z})=n \operatorname{Var}\left(X_{1}\right)$, so

$$
\mathbb{P}\left\{\left|\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{X}_{\mathbf{i}}-\mathbf{n} \mathbb{E} \mathbf{X}_{\mathbf{1}}\right|>\mathbf{t}\right\} \leq \frac{\mathbf{n} \operatorname{Var}\left(\mathbf{X}_{1}\right)}{\mathbf{t}^{2}}
$$

Equivalently,

$$
\mathbb{P}\left\{\left|\sum_{i=1}^{n} \mathbf{X}_{\mathbf{i}}-\mathbf{n} \mathbb{E} \mathbf{X}_{1}\right|>\mathbf{t} \sqrt{\mathbf{n}}\right\} \leq \frac{\operatorname{Var}\left(\mathbf{X}_{1}\right)}{\mathbf{t}^{2}}
$$

Typical deviations are at most of the order $\sqrt{\mathbf{n}}$.

Pafnuty Chebyshev (1821-1894)

chernoff bounds

By the central limit theorem,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}\left\{\sum_{i=1}^{n} X_{i}-n \mathbb{E} X_{1}>t \sqrt{n}\right\} & =1-\Psi\left(t / \sqrt{\operatorname{Var}\left(X_{1}\right)}\right) \\
& \leq e^{-t^{2} /\left(2 \operatorname{Var}\left(X_{1}\right)\right)}
\end{aligned}
$$

so we expect an exponential decrease in $\mathbf{t}^{\mathbf{2}} / \operatorname{Var}\left(\mathbf{X}_{\mathbf{1}}\right)$.

chernoff bounds

By the central limit theorem,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}\left\{\sum_{i=1}^{n} X_{i}-n \mathbb{E} X_{1}>t \sqrt{n}\right\} \quad & =1-\Psi\left(t / \sqrt{\operatorname{Var}\left(X_{1}\right)}\right) \\
& \leq e^{-t^{2} /\left(2 \operatorname{Var}\left(X_{1}\right)\right)}
\end{aligned}
$$

so we expect an exponential decrease in $\mathbf{t}^{2} / \operatorname{Var}\left(\mathbf{X}_{1}\right)$.
Trick: use Markov's inequality in a more clever way: if $\boldsymbol{\lambda}>\mathbf{0}$,

$$
\mathbb{P}\{Z-\mathbb{E} Z>t\}=\mathbb{P}\left\{e^{\lambda(Z-\mathbb{E} Z)}>\mathrm{e}^{\lambda \mathrm{t}}\right\} \leq \frac{\mathbb{E} \mathrm{e}^{\lambda(Z-\mathbb{E} Z)}}{\mathrm{e}^{\lambda \mathrm{t}}}
$$

Now derive bounds for the moment generating function $\mathbb{E} \mathbf{e}^{\lambda(Z-\mathbb{E})}$ and optimize $\boldsymbol{\lambda}$.

chernoff bounds

If $\mathbf{Z}=\sum_{\mathbf{i}=1}^{\mathrm{n}} \mathbf{X}_{\mathbf{i}}$ is a sum of independent random variables,

$$
\mathbb{E} e^{\lambda Z}=\mathbb{E} \prod_{i=1}^{n} e^{\lambda x_{i}}=\prod_{i=1}^{n} \mathbb{E} e^{\lambda x_{i}}
$$

by independence. Now it suffices to find bounds for $\mathbb{E} \mathbf{e}^{\lambda X_{i}}$.

chernoff bounds

If $\mathbf{Z}=\sum_{\mathbf{i}=1}^{n} \mathbf{X}_{\mathbf{i}}$ is a sum of independent random variables,

$$
\mathbb{E} e^{\lambda Z}=\mathbb{E} \prod_{i=1}^{n} e^{\lambda x_{i}}=\prod_{i=1}^{n} \mathbb{E} e^{\lambda x_{i}}
$$

by independence. Now it suffices to find bounds for $\mathbb{E} \mathbf{e}^{\lambda \mathrm{X}_{\mathrm{i}}}$.

Serguei Bernstein (1880-1968)

Herman Chernoff (1923-)
hoeffding's inequality
If $X_{1}, \ldots, X_{n} \in[0,1]$, then

$$
\mathbb{E} \mathrm{e}^{\lambda\left(\mathrm{X}_{\mathrm{i}}-\mathbb{E} \mathrm{X}_{\mathrm{i}}\right)} \leq \mathrm{e}^{\lambda^{2} / 8}
$$

hoeffding's inequality
If $X_{1}, \ldots, X_{n} \in[0,1]$, then

$$
\mathbb{E} \mathbf{e}^{\lambda\left(\mathrm{X}_{\mathrm{i}}-\mathbb{E} \mathrm{X}_{\mathrm{i}}\right)} \leq \mathrm{e}^{\lambda^{2} / 8}
$$

We obtain

$$
\mathbb{P}\left\{\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]\right|>t\right\} \leq 2 e^{-2 n t^{2}}
$$

bernstein's inequality

Hoeffding's inequality is distribution free. It does not take variance information into account.
Bernstein's inequality is an often useful variant: Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent such that $\mathbf{X}_{\mathbf{i}} \leq \mathbf{1}$. Let $v=\sum_{i=1}^{n} \mathbb{E}\left[\mathbf{X}_{\mathbf{i}}^{2}\right]$. Then

$$
\mathbb{P}\left\{\sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X_{i}\right) \geq t\right\} \leq \exp \left(-\frac{t^{2}}{2(v+t / 3)}\right)
$$

a maximal inequality

Suppose $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{\mathbf{N}}$ are sub-Gaussian in the sense that

$$
\mathbb{E} \mathbf{e}^{\lambda Y_{i}} \leq \mathrm{e}^{\lambda^{2} \sigma^{2} / 2}
$$

Then

$$
\mathbb{E} \max _{i=1, \ldots, \mathrm{~N}} \mathrm{Y}_{\mathrm{i}} \leq \sigma \sqrt{2 \log \mathrm{~N}}
$$

a maximal inequality

Suppose $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{\mathbf{N}}$ are sub-Gaussian in the sense that

$$
\mathbb{E} \mathbf{e}^{\lambda Y_{i}} \leq \mathrm{e}^{\lambda^{2} \sigma^{2} / 2}
$$

Then

$$
\mathbb{E} \max _{\mathrm{i}=1, \ldots, \mathrm{~N}} \mathrm{Y}_{\mathrm{i}} \leq \sigma \sqrt{2 \log \mathrm{~N}}
$$

Proof:

$$
\mathbf{e}^{\lambda \mathbb{E} \max _{i=1, \ldots, N} Y_{i}} \leq \mathbb{E} \mathbf{e}^{\lambda \max _{i=1, \ldots, N} Y_{i}} \leq \sum_{i=1}^{N} \mathbb{E} \mathbf{e}^{\lambda Y_{i}} \leq N e^{\lambda^{2} \sigma^{2} / 2}
$$

Take logarithms, and optimize in $\boldsymbol{\lambda}$.

uniform deviations-finite classes

Let $\mathbf{A}_{1}, \ldots, \mathbf{A}_{\mathbf{N}} \subset \mathcal{X}$ and let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be i.i.d. random points in \mathcal{X}. Let

$$
\mathbf{P}(\mathbf{A})=\mathbb{P}\left\{\mathbf{X}_{1} \in \mathbf{A}\right\} \quad \text { and } \quad \mathbf{P}_{\mathrm{n}}(\mathbf{A})=\frac{1}{\mathbf{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbb{1}_{\mathbf{x}_{\mathrm{i}} \in \mathbf{A}}
$$

By Hoeffding's inequality, for each A,

$$
\begin{aligned}
\mathbb{E} \mathrm{e}^{\lambda\left(P(A)-P_{n}(A)\right)} & =\mathbb{E} \mathbf{e}^{(\lambda / n) \sum_{i=1}^{n}\left(P(A)-\mathbb{1}_{x_{i} \in A}\right)} \\
& =\prod_{i=1}^{n} \mathbb{E} e^{(\lambda / n)\left(P(A)-\mathbb{1}_{x_{i} \in A}\right)} \leq e^{\lambda^{2} /(8 n)}
\end{aligned}
$$

By the maximal inequality,

$$
\mathbb{E} \max _{j=1, \ldots, N}\left(P\left(A_{j}\right)-P_{n}\left(A_{j}\right)\right) \leq \sqrt{\frac{\log N}{2 n}}
$$

johnson-lindenstrauss

Suppose $\mathbf{A}=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{R}^{\mathbf{D}}$ is a finite set, \mathbf{D} is large.
We would like to embed \mathbf{A} in $\mathbb{R}^{\mathbf{d}}$ where $\mathbf{d} \ll \mathbf{D}$.

johnson-lindenstrauss

Suppose $\mathbf{A}=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{R}^{\mathbf{D}}$ is a finite set, \mathbf{D} is large.
We would like to embed \mathbf{A} in $\mathbb{R}^{\mathbf{d}}$ where $\mathbf{d} \ll \mathbf{D}$.
Is this possible? In what sense?

johnson-lindenstrauss

Suppose $\mathbf{A}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\} \subset \mathbb{R}^{\mathbf{D}}$ is a finite set, \mathbf{D} is large.
We would like to embed \mathbf{A} in $\mathbb{R}^{\mathbf{d}}$ where $\mathbf{d} \ll \mathbf{D}$.
Is this possible? In what sense?
Given $\varepsilon>0$, a function $\mathbf{f}: \mathbb{R}^{\mathbf{D}} \rightarrow \mathbb{R}^{\mathbf{d}}$ is an ε-isometry if for all a, $\mathbf{a}^{\prime} \in \mathbf{A}$,

$$
(1-\varepsilon)\left\|a-a^{\prime}\right\|^{2} \leq\left\|f(a)-f\left(a^{\prime}\right)\right\|^{2} \leq(1+\varepsilon)\left\|a-a^{\prime}\right\|^{2}
$$

johnson-lindenstrauss

Suppose $\mathbf{A}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\} \subset \mathbb{R}^{\mathbf{D}}$ is a finite set, \mathbf{D} is large.
We would like to embed \mathbf{A} in $\mathbb{R}^{\mathbf{d}}$ where $\mathbf{d} \ll \mathbf{D}$.
Is this possible? In what sense?
Given $\varepsilon>0$, a function $\mathbf{f}: \mathbb{R}^{\mathbf{D}} \rightarrow \mathbb{R}^{\mathbf{d}}$ is an ε-isometry if for all a, $\mathbf{a}^{\prime} \in \mathbf{A}$,

$$
(1-\varepsilon)\left\|a-a^{\prime}\right\|^{2} \leq\left\|f(a)-f\left(a^{\prime}\right)\right\|^{2} \leq(1+\varepsilon)\left\|a-a^{\prime}\right\|^{2}
$$

Johnson-Lindenstrauss lemma: If $\mathbf{d} \geq\left(\mathbf{c} / \varepsilon^{2}\right) \log \mathbf{n}$, then there exists an ε-isometry $\mathbf{f}: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{\mathbf{d}}$.

johnson-lindenstrauss

Suppose $\mathbf{A}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\} \subset \mathbb{R}^{\mathbf{D}}$ is a finite set, \mathbf{D} is large.
We would like to embed \mathbf{A} in $\mathbb{R}^{\mathbf{d}}$ where $\mathbf{d} \ll \mathbf{D}$.
Is this possible? In what sense?
Given $\varepsilon>0$, a function $\mathbf{f}: \mathbb{R}^{\mathbf{D}} \rightarrow \mathbb{R}^{\mathbf{d}}$ is an ε-isometry if for all a, $\mathbf{a}^{\prime} \in \mathbf{A}$,

$$
(1-\varepsilon)\left\|a-a^{\prime}\right\|^{2} \leq\left\|f(a)-f\left(a^{\prime}\right)\right\|^{2} \leq(1+\varepsilon)\left\|a-a^{\prime}\right\|^{2}
$$

Johnson-Lindenstrauss lemma: If $\mathbf{d} \geq\left(\mathbf{c} / \varepsilon^{2}\right) \log \mathbf{n}$, then there exists an ε-isometry $\mathbf{f}: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{\mathbf{d}}$.

Independent of \mathbf{D} !

random projections

We take \mathbf{f} to be linear. How? At random!

random projections

We take \mathbf{f} to be linear. How? At random!
Let $\mathbf{f}=\left(\mathbf{W}_{\mathrm{i}, \mathrm{j}}\right)_{\mathbf{d} \times \mathbf{D}}$ with

$$
W_{i, j}=\frac{1}{\sqrt{d}} X_{i, j}
$$

where the $\mathbf{X}_{\mathbf{i}, \mathrm{j}}$ are independent standard normal.

random projections

We take \mathbf{f} to be linear. How? At random!
Let $\mathbf{f}=\left(\mathbf{W}_{\mathrm{i}, \mathrm{j}}\right)_{\mathbf{d} \times \mathbf{D}}$ with

$$
W_{i, j}=\frac{1}{\sqrt{d}} X_{i, j}
$$

where the $\mathbf{X}_{\mathbf{i}, \mathrm{j}}$ are independent standard normal.
For any $\mathbf{a}=\left(\alpha_{1}, \ldots, \alpha_{\mathrm{D}}\right) \in \mathbb{R}^{\mathrm{D}}$,

$$
\mathbb{E}\|f(a)\|^{2}=\frac{1}{d} \sum_{i=1}^{d} \sum_{j=1}^{D} \alpha_{j}^{2} \mathbb{E} X_{i, j}^{2}=\|a\|^{2}
$$

The expected squared distances are preserved!

random projections

We take \mathbf{f} to be linear. How? At random!
Let $\mathbf{f}=\left(\mathbf{W}_{\mathbf{i}, \mathbf{j}}\right)_{\mathbf{d} \times \mathbf{D}}$ with

$$
W_{i, j}=\frac{1}{\sqrt{d}} X_{i, j}
$$

where the $\mathbf{X}_{\mathbf{i}, \mathrm{j}}$ are independent standard normal.
For any $\mathbf{a}=\left(\alpha_{1}, \ldots, \alpha_{\mathrm{D}}\right) \in \mathbb{R}^{\mathrm{D}}$,

$$
\mathbb{E}\|f(a)\|^{2}=\frac{1}{d} \sum_{i=1}^{d} \sum_{j=1}^{D} \alpha_{j}^{2} \mathbb{E} X_{i, j}^{2}=\|a\|^{2}
$$

The expected squared distances are preserved! $\|f(a)\|^{2} /\|a\|^{2}$ is a weighted sum of squared normals.

random projections

Let $\mathbf{b}=\mathbf{a}_{\mathbf{i}}-\mathbf{a}_{\mathbf{j}}$ for some $\mathbf{a}_{\mathbf{i}}, \mathbf{a}_{\mathbf{j}} \in \mathbf{A}$. Then

$$
\begin{aligned}
& \mathbb{P}\left\{\exists \mathbf{b}:\left|\frac{\|\mathbf{f}(\mathbf{b})\|^{2}}{\|\mathbf{b}\|^{2}}-1\right|>\sqrt{\frac{8 \log (\mathbf{n} / \sqrt{\delta})}{\mathbf{d}}}+\frac{8 \log (\mathbf{n} / \sqrt{\delta})}{\mathbf{d}}\right\} \\
& \leq\binom{\mathbf{n}}{2} \mathbb{P}\left\{\left|\frac{\|\mathbf{f}(\mathbf{b})\|^{2}}{\|\mathbf{b}\|^{2}}-1\right|>\sqrt{\frac{8 \log (\mathrm{n} / \sqrt{\delta})}{\mathbf{d}}}+\frac{8 \log (\mathrm{n} / \sqrt{\delta})}{\mathbf{d}}\right\} \\
& \leq \delta \quad \text { (by a Bernstein-type inequality). } \\
& \text { If } \mathbf{d} \geq\left(\mathbf{c} / \varepsilon^{2}\right) \log (\mathrm{n} / \sqrt{\delta}) \text {, then }
\end{aligned}
$$

$$
\sqrt{\frac{8 \log (n / \sqrt{\delta})}{d}}+\frac{8 \log (n / \sqrt{\delta})}{d} \leq \varepsilon
$$

and \mathbf{f} is an ε-isometry with probability $\geq \mathbf{1 - \delta}$.

martingale representation

$\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathrm{n}}$ are independent random variables taking values in some set \mathcal{X}. Let $\mathbf{f}: \mathcal{X}^{\mathbf{n}} \rightarrow \mathbb{R}$ and

$$
Z=f\left(X_{1}, \ldots, X_{n}\right)
$$

Denote $\mathbb{E}_{\mathbf{i}}[\cdot]=\mathbb{E}\left[\cdot \mid \mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{i}}\right]$. Thus, $\mathbb{E}_{\mathbf{0}} \mathbf{Z}=\mathbb{E} \mathbf{Z}$ and $\mathbb{E}_{\mathbf{n}} \mathbf{Z}=\mathbf{Z}$.

martingale representation

$\mathrm{X}_{1}, \ldots, \mathbf{X}_{\mathrm{n}}$ are independent random variables taking values in some set \mathcal{X}. Let $\mathbf{f}: \mathcal{X}^{\mathbf{n}} \rightarrow \mathbb{R}$ and

$$
Z=f\left(X_{1}, \ldots, X_{n}\right)
$$

Denote $\mathbb{E}_{\mathbf{i}}[\cdot]=\mathbb{E}\left[\cdot \mid \mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{i}}\right]$. Thus, $\mathbb{E}_{\mathbf{0}} \mathbf{Z}=\mathbb{E} \mathbf{Z}$ and $\mathbb{E}_{\mathbf{n}} \mathbf{Z}=\mathbf{Z}$.
Writing

$$
\Delta_{i}=\mathbb{E}_{\mathrm{i}} \mathbf{Z}-\mathbb{E}_{\mathrm{i}-1} \mathbf{Z}
$$

we have

$$
\mathbf{Z}-\mathbb{E} \mathbf{Z}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \boldsymbol{\Delta}_{\mathrm{i}}
$$

This is the Doob martingale representation of \mathbf{Z}.

martingale representation

$\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ are independent random variables taking values in some set \mathcal{X}. Let $\mathbf{f}: \mathcal{X}^{\mathbf{n}} \rightarrow \mathbb{R}$ and

$$
Z=f\left(X_{1}, \ldots, X_{n}\right)
$$

Denote $\mathbb{E}_{\mathbf{i}}[\cdot]=\mathbb{E}\left[\cdot \mid \mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{i}}\right]$. Thus, $\mathbb{E}_{\mathbf{0}} \mathbf{Z}=\mathbb{E} \mathbf{Z}$ and $\mathbb{E}_{\mathbf{n}} \mathbf{Z}=\mathbf{Z}$.
Writing

$$
\Delta_{i}=\mathbb{E}_{\mathrm{i}} \mathbf{Z}-\mathbb{E}_{\mathrm{i}-1} \mathbf{Z},
$$

we have

$$
\mathbf{Z}-\mathbb{E} \mathbf{Z}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \boldsymbol{\Delta}_{\mathbf{i}}
$$

This is the Doob martingale representation of \mathbf{Z}.

martingale representation: the variance

$$
\operatorname{Var}(Z)=\mathbb{E}\left[\left(\sum_{i=1}^{n} \Delta_{i}\right)^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[\Delta_{i}^{2}\right]+2 \sum_{j>i} \mathbb{E} \Delta_{i} \Delta_{j} .
$$

Now if $\mathbf{j}>\mathbf{i}, \mathbb{E}_{\mathbf{i}} \boldsymbol{\Delta}_{\mathbf{j}}=\mathbf{0}$, so

$$
\mathbb{E}_{\mathrm{i}} \Delta_{\mathrm{j}} \Delta_{\mathrm{i}}=\Delta_{\mathrm{i}} \mathbb{E}_{\mathrm{i}} \Delta_{\mathrm{j}}=0,
$$

We obtain

$$
\operatorname{Var}(Z)=\mathbb{E}\left[\left(\sum_{i=1}^{n} \Delta_{i}\right)^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[\Delta_{i}^{2}\right] .
$$

martingale representation: the variance

$$
\operatorname{Var}(Z)=\mathbb{E}\left[\left(\sum_{i=1}^{n} \Delta_{i}\right)^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[\Delta_{i}^{2}\right]+2 \sum_{j>i} \mathbb{E} \Delta_{i} \Delta_{j}
$$

Now if $\mathbf{j}>\mathbf{i}, \mathbb{E}_{\mathrm{i}} \boldsymbol{\Delta}_{\mathrm{j}}=\mathbf{0}$, so

$$
\mathbb{E}_{\mathrm{i}} \Delta_{\mathrm{j}} \Delta_{\mathrm{i}}=\Delta_{\mathrm{i}} \mathbb{E}_{\mathrm{i}} \Delta_{\mathrm{j}}=0
$$

We obtain

$$
\operatorname{Var}(Z)=\mathbb{E}\left[\left(\sum_{i=1}^{n} \boldsymbol{\Delta}_{\mathbf{i}}\right)^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[\boldsymbol{\Delta}_{i}^{2}\right]
$$

From this, using independence, it is easy derive the Efron-Stein inequality.

efron-stein inequality (1981)

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent random variables taking values in \mathcal{X}. Let $\mathbf{f}: \mathcal{X}^{\mathbf{n}} \rightarrow \mathbb{R}$ and $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$.
Then

$$
\operatorname{Var}(Z) \leq \mathbb{E} \sum_{i=1}^{n}\left(Z-\mathbb{E}^{(i)} Z\right)^{2}=\mathbb{E} \sum_{i=1}^{n} \operatorname{Var}^{(i)}(Z)
$$

where $\mathbb{E}^{(\mathbf{i})} \mathbf{Z}$ is expectation with respect to the \mathbf{i}-th variable $\mathbf{X}_{\mathbf{i}}$ only.

efron-stein inequality (1981)

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent random variables taking values in \mathcal{X}. Let $\mathbf{f}: \mathcal{X}^{\mathbf{n}} \rightarrow \mathbb{R}$ and $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathrm{n}}\right)$.
Then

$$
\operatorname{Var}(Z) \leq \mathbb{E} \sum_{i=1}^{n}\left(Z-\mathbb{E}^{(i)} Z\right)^{2}=\mathbb{E} \sum_{i=1}^{n} \operatorname{Var}^{(i)}(Z)
$$

where $\mathbb{E}^{(\mathbf{i})} \mathbf{Z}$ is expectation with respect to the \mathbf{i}-th variable $\mathbf{X}_{\mathbf{i}}$ only.

We obtain more useful forms by using that

$$
\operatorname{Var}(\mathbf{X})=\frac{1}{2} \mathbb{E}\left(\mathbf{X}-\mathbf{X}^{\prime}\right)^{2} \quad \text { and } \quad \operatorname{Var}(\mathbf{X}) \leq \mathbb{E}(\mathbf{X}-\mathbf{a})^{2}
$$

for any constant a.

efron-stein inequality (1981)

If $\mathbf{X}_{1}^{\prime}, \ldots, \mathbf{X}_{\mathbf{n}}^{\prime}$ are independent copies of $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$, and

$$
Z_{i}^{\prime}=f\left(X_{1}, \ldots, X_{i-1}, X_{i}^{\prime}, X_{i+1}, \ldots, X_{n}\right)
$$

then

$$
\operatorname{Var}(Z) \leq \frac{1}{2} \mathbb{E}\left[\sum_{i=1}^{n}\left(Z-Z_{i}^{\prime}\right)^{2}\right]
$$

\mathbf{Z} is concentrated if it doesn't depend too much on any of its variables.

efron-stein inequality (1981)

If $\mathbf{X}_{1}^{\prime}, \ldots, \mathbf{X}_{\mathbf{n}}^{\prime}$ are independent copies of $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$, and

$$
Z_{i}^{\prime}=f\left(X_{1}, \ldots, X_{i-1}, X_{i}^{\prime}, X_{i+1}, \ldots, X_{n}\right)
$$

then

$$
\operatorname{Var}(Z) \leq \frac{1}{2} \mathbb{E}\left[\sum_{i=1}^{n}\left(Z-Z_{i}^{\prime}\right)^{2}\right]
$$

\mathbf{Z} is concentrated if it doesn't depend too much on any of its variables.
If $\mathbf{Z}=\sum_{\mathbf{i}=1}^{\mathrm{n}} \mathbf{X}_{\mathbf{i}}$ then we have an equality. Sums are the "least concentrated" of all functions!

efron-stein inequality (1981)

If for some arbitrary functions $\mathbf{f}_{\mathbf{i}}$

$$
Z_{i}=f_{i}\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)
$$

then

$$
\operatorname{Var}(Z) \leq \mathbb{E}\left[\sum_{i=1}^{n}\left(\mathbf{Z}-\mathbf{Z}_{\mathbf{i}}\right)^{2}\right]
$$

efron, stein, and steele

Bradley Efron

Charles Stein

Mike Steele

example: uniform deviations

Let \mathcal{A} be a collection of subsets of \mathcal{X}, and let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be \mathbf{n} random points in \mathcal{X} drawn i.i.d.
Let

$$
\begin{aligned}
& \qquad \mathbf{P}(\mathbf{A})=\mathbb{P}\left\{\mathbf{X}_{1} \in \mathbf{A}\right\} \quad \text { and } \quad \mathbf{P}_{\mathbf{n}}(\mathbf{A})=\frac{1}{\mathbf{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbb{1}_{\mathbf{X}_{i} \in \mathbf{A}} \\
& \text { If } \mathbf{Z}=\sup _{\mathbf{A} \in \mathcal{A}}\left|\mathbf{P}(\mathbf{A})-\mathbf{P}_{\mathbf{n}}(\mathbf{A})\right|, \\
& \qquad \operatorname{Var}(\mathbf{Z}) \leq \frac{1}{2 \mathbf{n}}
\end{aligned}
$$

example: uniform deviations

Let \mathcal{A} be a collection of subsets of \mathcal{X}, and let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be \mathbf{n} random points in \mathcal{X} drawn i.i.d.
Let

$$
\begin{aligned}
& \qquad \mathbf{P}(\mathbf{A})=\mathbb{P}\left\{\mathbf{X}_{1} \in \mathbf{A}\right\} \quad \text { and } \quad \mathbf{P}_{\mathrm{n}}(\mathbf{A})=\frac{1}{\mathbf{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbb{1}_{\mathbf{x}_{\mathrm{i}} \in \mathbf{A}} \\
& \text { If } \mathbf{Z}=\sup _{\mathbf{A} \in \mathcal{A}}\left|\mathbf{P}(\mathbf{A})-\mathbf{P}_{\mathrm{n}}(\mathbf{A})\right|, \\
& \qquad \operatorname{Var}(\mathbf{Z}) \leq \frac{1}{2 \mathbf{n}}
\end{aligned}
$$

regardless of the distribution and the richness of \mathcal{A}.

example: kernel density estimation

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be i.i.d. real samples drawn according to some density ϕ. The kernel density estimate is

$$
\phi_{\mathrm{n}}(\mathrm{x})=\frac{1}{\mathrm{nh}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~K}\left(\frac{\mathrm{x}-\mathrm{X}_{\mathrm{i}}}{\mathrm{~h}}\right)
$$

where $\mathbf{h}>\mathbf{0}$, and \mathbf{K} is a nonnegative "kernel" $\int \mathbf{K}=1$. The \mathbf{L}_{1} error is

$$
\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathrm{n}}\right)=\int\left|\phi(\mathrm{x})-\phi_{\mathrm{n}}(\mathrm{x})\right| \mathbf{d x}
$$

example: kernel density estimation

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be i.i.d. real samples drawn according to some density ϕ. The kernel density estimate is

$$
\phi_{\mathrm{n}}(\mathrm{x})=\frac{1}{\mathrm{nh}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~K}\left(\frac{\mathrm{x}-\mathrm{X}_{\mathrm{i}}}{\mathrm{~h}}\right)
$$

where $\mathbf{h}>\mathbf{0}$, and \mathbf{K} is a nonnegative "kernel" $\int \mathbf{K}=1$. The $\mathbf{L}_{\mathbf{1}}$ error is

$$
\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathrm{n}}\right)=\int\left|\phi(\mathrm{x})-\phi_{\mathrm{n}}(\mathrm{x})\right| \mathbf{d x}
$$

It is easy to see that

$$
\begin{aligned}
& \left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \\
& \leq \frac{1}{n h} \int\left|K\left(\frac{x-x_{i}}{h}\right)-K\left(\frac{x-x_{i}^{\prime}}{h}\right)\right| d x \leq \frac{2}{n} \\
& \text { so we get } \operatorname{Var}(Z) \leq \frac{2}{n}
\end{aligned}
$$

bounding the expectation

Let $\mathbf{P}_{\mathrm{n}}^{\prime}(\mathbf{A})=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbb{1}_{\mathbf{X}_{\mathrm{i}}^{\prime} \in \mathbf{A}}$ and let \mathbb{E}^{\prime} denote expectation only with respect to $\mathbf{X}_{1}^{\prime}, \ldots, \mathbf{X}_{\mathbf{n}}^{\prime}$.

$$
\begin{aligned}
& \mathbb{E} \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right|=\mathbb{E} \sup _{A \in \mathcal{A}}\left|\mathbb{E}^{\prime}\left[P_{n}(A)-P_{n}^{\prime}(A)\right]\right| \\
& \leq \mathbb{E} \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P_{n}^{\prime}(A)\right|=\frac{1}{n} \mathbb{E} \sup _{A \in \mathcal{A}}\left|\sum_{i=1}^{n}\left(\mathbb{1}_{X_{i} \in A}-\mathbb{1}_{X_{i}^{\prime} \in A}\right)\right|
\end{aligned}
$$

bounding the expectation

Let $P_{n}^{\prime}(\mathbf{A})=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\mathbf{X}_{i}^{\prime} \in \mathbf{A}}$ and let \mathbb{E}^{\prime} denote expectation only with respect to $\mathbf{X}_{1}^{\prime}, \ldots, \mathbf{X}_{\mathbf{n}}^{\prime}$.

$$
\begin{aligned}
& \mathbb{E} \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right|=\mathbb{E} \sup _{A \in \mathcal{A}}\left|\mathbb{E}^{\prime}\left[P_{n}(A)-P_{n}^{\prime}(A)\right]\right| \\
& \leq \mathbb{E} \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P_{n}^{\prime}(A)\right|=\frac{1}{n} \mathbb{E} \sup _{A \in \mathcal{A}}\left|\sum_{i=1}^{n}\left(\mathbb{1}_{X_{i} \in A}-\mathbb{1}_{X_{i}^{\prime} \in A}\right)\right|
\end{aligned}
$$

Second symmetrization: if $\varepsilon_{1}, \ldots, \varepsilon_{\mathrm{n}}$ are independent Rademacher variables, then

$$
=\frac{1}{n} \mathbb{E} \sup _{A \in \mathcal{A}}\left|\sum_{i=1}^{n} \varepsilon_{i}\left(\mathbb{1}_{x_{i} \in A}-\mathbb{1}_{X_{i}^{\prime} \in A}\right)\right| \leq \frac{2}{n} \mathbb{E} \sup _{A \in \mathcal{A}}\left|\sum_{i=1}^{n} \varepsilon_{i} \mathbb{1}_{x_{i} \in A}\right|
$$

conditional rademacher average

If

$$
\mathbf{R}_{\mathbf{n}}=\mathbb{E}_{\varepsilon} \sup _{\mathbf{A} \in \mathcal{A}}\left|\sum_{\mathrm{i}=1}^{\mathrm{n}} \varepsilon_{i} \mathbb{1}_{\mathrm{X}_{\mathrm{i}} \in \mathrm{~A}}\right|
$$

then

$$
\mathbb{E} \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right| \leq \frac{2}{n} \mathbb{E} R_{n}
$$

conditional rademacher average

If

$$
\mathbf{R}_{\mathbf{n}}=\mathbb{E}_{\varepsilon} \sup _{\mathbf{A} \in \mathcal{A}}\left|\sum_{\mathrm{i}=1}^{\mathrm{n}} \varepsilon_{\mathrm{i}} \mathbb{1}_{\mathbf{x}_{\mathrm{i}} \in \mathrm{~A}}\right|
$$

then

$$
\mathbb{E} \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right| \leq \frac{2}{n} \mathbb{E} R_{n} .
$$

$\mathbf{R}_{\mathbf{n}}$ is a data-dependent quantity!

concentration of conditional rademacher average

Define

$$
R_{n}^{(i)}=\mathbb{E}_{\varepsilon} \sup _{A \in \mathcal{A}}\left|\sum_{j \neq i} \varepsilon_{j} \mathbb{1}_{x_{j} \in A}\right|
$$

One can show easily that

$$
0 \leq \mathbf{R}_{\mathrm{n}}-\mathbf{R}_{\mathrm{n}}^{(\mathrm{i})} \leq \mathbf{1} \quad \text { and } \quad \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathbf{R}_{\mathrm{n}}-\mathbf{R}_{\mathrm{n}}^{(\mathrm{i})}\right) \leq \mathbf{R}_{\mathrm{n}}
$$

By the Efron-Stein inequality,

$$
\operatorname{Var}\left(\mathbf{R}_{\mathrm{n}}\right) \leq \mathbb{E} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathbf{R}_{\mathrm{n}}-\mathbf{R}_{\mathrm{n}}^{(\mathrm{i})}\right)^{2} \leq \mathbb{E} \mathbf{R}_{\mathrm{n}}
$$

concentration of conditional rademacher average

Define

$$
R_{n}^{(i)}=\mathbb{E}_{\varepsilon} \sup _{A \in \mathcal{A}}\left|\sum_{j \neq i} \varepsilon_{j} \mathbb{1}_{x_{j} \in A}\right|
$$

One can show easily that

$$
0 \leq R_{n}-R_{n}^{(i)} \leq 1 \quad \text { and } \quad \sum_{i=1}^{n}\left(R_{n}-R_{n}^{(i)}\right) \leq R_{n}
$$

By the Efron-Stein inequality,

$$
\operatorname{Var}\left(\mathbf{R}_{\mathrm{n}}\right) \leq \mathbb{E} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathbf{R}_{\mathrm{n}}-\mathbf{R}_{\mathrm{n}}^{(\mathrm{i})}\right)^{2} \leq \mathbb{E} \mathbf{R}_{\mathrm{n}}
$$

Standard deviation is at most $\sqrt{\mathbb{E} \mathbf{R}_{\mathbf{n}}}$!

concentration of conditional rademacher average

Define

$$
\mathbf{R}_{\mathrm{n}}^{(\mathrm{i})}=\mathbb{E}_{\varepsilon} \sup _{\mathbf{A} \in \mathcal{A}}\left|\sum_{\mathrm{j} \neq \mathrm{i}} \varepsilon_{\mathrm{j}} \mathbb{1}_{\mathbf{x}_{\mathrm{j}} \in \mathrm{~A}}\right|
$$

One can show easily that

$$
0 \leq R_{n}-R_{n}^{(i)} \leq 1 \quad \text { and } \quad \sum_{i=1}^{n}\left(R_{n}-R_{n}^{(i)}\right) \leq R_{n}
$$

By the Efron-Stein inequality,

$$
\operatorname{Var}\left(\mathbf{R}_{\mathbf{n}}\right) \leq \mathbb{E} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathbf{R}_{\mathbf{n}}-\mathbf{R}_{\mathrm{n}}^{(\mathrm{i})}\right)^{2} \leq \mathbb{E} \mathbf{R}_{\mathbf{n}}
$$

Standard deviation is at most $\sqrt{\mathbb{E} \mathbf{R}_{\mathbf{n}}}$!
Such functions are called self-bounding.

bounding the conditional rademacher average

If $\mathrm{S}\left(\mathrm{X}_{1}^{\mathrm{n}}, \mathcal{A}\right)$ is the number of different sets of form

$$
\left\{\mathbf{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\} \cap \mathbf{A}: \mathbf{A} \in \mathcal{A}
$$

then $\mathbf{R}_{\mathbf{n}}$ is the maximum of $\mathbf{S}\left(\mathrm{X}_{1}^{\mathrm{n}}, \mathcal{A}\right)$ sub-Gaussian random variables. By the maximal inequality,

$$
\frac{1}{2} R_{n} \leq \sqrt{\frac{\log S\left(X_{1}^{n}, \mathcal{A}\right)}{2 n}} .
$$

bounding the conditional rademacher average

If $\mathrm{S}\left(\mathrm{X}_{1}^{\mathrm{n}}, \mathcal{A}\right)$ is the number of different sets of form

$$
\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\} \cap \mathrm{A}: \mathbf{A} \in \mathcal{A}
$$

then $\mathbf{R}_{\mathbf{n}}$ is the maximum of $\mathrm{S}\left(\mathrm{X}_{1}^{\mathrm{n}}, \mathcal{A}\right)$ sub-Gaussian random variables. By the maximal inequality,

$$
\frac{1}{2} R_{n} \leq \sqrt{\frac{\log S\left(X_{1}^{n}, \mathcal{A}\right)}{2 n}}
$$

In particular,

$$
\mathbb{E} \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right| \leq 2 \mathbb{E} \sqrt{\frac{\log S\left(X_{1}^{n}, \mathcal{A}\right)}{2 n}}
$$

random VC dimension

Let $\mathbf{V}=\mathbf{V}\left(\mathrm{x}_{1}^{\mathrm{n}}, \mathcal{A}\right)$ be the size of the largest subset of $\left\{x_{1}, \ldots, x_{n}\right\}$ shattered by \mathcal{A}.
By Sauer's lemma,

$$
\log \mathrm{S}\left(\mathrm{X}_{1}^{n}, \mathcal{A}\right) \leq \mathrm{V}\left(\mathrm{X}_{1}^{n}, \mathcal{A}\right) \log (\mathrm{n}+1)
$$

random VC dimension

Let $\mathbf{V}=\mathbf{V}\left(\mathrm{x}_{1}^{\mathrm{n}}, \mathcal{A}\right)$ be the size of the largest subset of $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ shattered by \mathcal{A}.
By Sauer's lemma,

$$
\log S\left(X_{1}^{n}, \mathcal{A}\right) \leq V\left(X_{1}^{n}, \mathcal{A}\right) \log (n+1)
$$

\mathbf{V} is also self-bounding:

$$
\sum_{i=1}^{n}\left(V-V^{(i)}\right)^{2} \leq V
$$

so by Efron-Stein,

$$
\operatorname{Var}(\mathbf{V}) \leq \mathbb{E} \mathbf{V}
$$

vapnik and chervonenkis

Vladimir Vapnik

Alexey Chervonenkis

beyond the variance

$\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ are independent random variables taking values in some set \mathcal{X}. Let $\mathbf{f}: \mathcal{X}^{\mathbf{n}} \rightarrow \mathbb{R}$ and $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$. Recall the Doob martingale representation:

$$
\mathbf{Z}-\mathbb{E} \mathbf{Z}=\sum_{\mathbf{i}=1}^{\mathrm{n}} \boldsymbol{\Delta}_{\mathrm{i}} \quad \text { where } \quad \boldsymbol{\Delta}_{\mathrm{i}}=\mathbb{E}_{\mathrm{i}} \mathbf{Z}-\mathbb{E}_{\mathrm{i}-1} \mathbf{Z}
$$

with $\mathbb{E}_{\mathrm{i}}[\cdot]=\mathbb{E}\left[\cdot \mid \mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{i}}\right]$.
To get exponential inequalities, we bound the moment generating function $\mathbb{E} \mathbf{e}^{\lambda(Z-\mathbb{E} Z)}$.

azuma's inequality

Suppose that the martingale differences are bounded: $\left|\boldsymbol{\Delta}_{\mathbf{i}}\right| \leq \mathbf{c}_{\mathbf{i}}$. Then

$$
\begin{aligned}
\mathbb{E} \mathbf{e}^{\lambda(Z-\mathbb{E} Z)} & =\mathbb{E} \mathbf{e}^{\lambda\left(\sum_{i=1}^{n} \Delta_{i}\right)}=\mathbb{E}_{\mathbf{n}} \mathbf{e}^{\lambda\left(\sum_{i=1}^{n-1} \Delta_{i}\right)+\lambda \Delta_{n}} \\
& =\mathbb{E} \mathbf{e}^{\lambda\left(\sum_{i=1}^{n-1} \Delta_{i}\right)} \mathbb{E}_{\mathbf{n}} \mathbf{e}^{\lambda \Delta_{n}} \\
& \leq \mathbb{E} \mathbf{e}^{\lambda\left(\sum_{i=1}^{n-1} \Delta_{i}\right)} \mathbf{e}^{\lambda^{2} c_{n}^{2} / 2} \text { (by Hoeffding) } \\
& \cdots \\
& \leq \mathbf{e}^{\lambda^{2}\left(\sum_{i=1}^{n} c_{i}^{2}\right) / 2}
\end{aligned}
$$

This is the Azuma-Hoeffding inequality for sums of bounded martingale differences.

bounded differences inequality

If $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, X_{n}\right)$ and \mathbf{f} is such that

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

then the martingale differences are bounded.

bounded differences inequality

If $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ and \mathbf{f} is such that

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

then the martingale differences are bounded.
Bounded differences inequality: if $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ are independent, then

$$
\mathbb{P}\{|\mathbf{Z}-\mathbb{E} \mathbf{Z}|>\mathrm{t}\} \leq 2 \mathrm{e}^{-2 \mathrm{t}^{2} / \sum_{i=1}^{n} \mathrm{c}_{\mathrm{i}}^{2}}
$$

bounded differences inequality

If $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, X_{n}\right)$ and \mathbf{f} is such that

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

then the martingale differences are bounded.
Bounded differences inequality: if $\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{n}}$ are independent, then

$$
\mathbb{P}\{|Z-\mathbb{E} \mathbf{Z}|>\mathrm{t}\} \leq 2 \mathbf{e}^{-2 \mathrm{t}^{2} / \sum_{\mathrm{i}=1}^{n} \mathrm{c}_{\mathrm{i}}^{2}}
$$

McDiarmid's inequality.

hoeffding in a hilbert space

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent zero-mean random variables in a separable Hilbert space such that $\left\|\mathbf{X}_{\mathbf{i}}\right\| \leq \mathbf{c} / \mathbf{2}$ and denote $\mathbf{v}=\mathbf{n c}^{2} / 4$. Then, for all $\mathbf{t} \geq \sqrt{\mathbf{v}}$,

$$
\mathbb{P}\left\{\left\|\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}\right\|>\mathrm{t}\right\} \leq \mathrm{e}^{-(\mathrm{t}-\sqrt{\mathrm{v}})^{2} /(2 \mathrm{v})}
$$

hoeffding in a hilbert space

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent zero-mean random variables in a separable Hilbert space such that $\left\|\mathbf{X}_{\mathbf{i}}\right\| \leq \mathbf{c} / \mathbf{2}$ and denote $\mathbf{v}=\mathrm{nc}^{2} / 4$. Then, for all $\mathbf{t} \geq \sqrt{\mathbf{v}}$,

$$
\mathbb{P}\left\{\left\|\sum_{i=1}^{n} X_{i}\right\|>t\right\} \leq e^{-(t-\sqrt{v})^{2} /(2 v)}
$$

Proof: By the triangle inequality, $\left\|\sum_{i=1}^{n} \mathbf{X}_{\mathbf{i}}\right\|$ has the bounded differences property with constants \mathbf{c}, so
$\mathbb{P}\left\{\left\|\sum_{\mathbf{i}=1}^{\mathrm{n}} \mathbf{x}_{\mathbf{i}}\right\|>\mathbf{t}\right\}=\mathbb{P}\left\{\left\|\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{x}_{\mathbf{i}}\right\|-\mathbb{E}\left\|\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{x}_{\mathbf{i}}\right\|>\mathbf{t}-\mathbb{E}\left\|\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{X}_{\mathbf{i}}\right\|\right\}$

$$
\leq \exp \left(-\frac{\left(t-\mathbb{E}\left\|\sum_{i=1}^{n} X_{i}\right\|\right)^{2}}{2 v}\right)
$$

Also,

$$
\mathbb{E}\left\|\sum_{i=1}^{n} X_{i}\right\| \leq \sqrt{\mathbb{E}\left\|\sum_{i=1}^{n} X_{i}\right\|^{2}}=\sqrt{\sum_{i=1}^{n} \mathbb{E}\left\|X_{i}\right\|^{2}} \leq \sqrt{v}
$$

bounded differences inequality

＊Easy to use．
类 Distribution free．
＊Often close to optimal（e．g．， L_{1} error of kernel density estimate）．
＊Does not exploit＂variance information．＂
类 Often too rigid．
类 Other methods are necessary．

shannon entropy

If \mathbf{X}, \mathbf{Y} are random variables taking values in a set of size \mathbf{N},

$$
H(X)=-\sum_{x} p(x) \log p(x)
$$

$$
\begin{aligned}
H(X \mid Y) & =H(X, Y)-H(Y) \\
& =-\sum_{x, y} p(x, y) \log p(x \mid y)
\end{aligned}
$$

$H(X) \leq \log N \quad$ and $\quad H(X \mid Y) \leq H(X)$

Claude Shannon
(1916-2001)

han's inequality

$$
\begin{aligned}
& \text { If } \mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right) \text { and } \\
& \mathbf{X}^{\mathbf{(i)}}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{i}-1}, \mathbf{X}_{\mathbf{i}+1}, \ldots, \mathbf{X}_{\mathbf{n}}\right) \text {, then }
\end{aligned}
$$

$$
\sum_{i=1}^{n}\left(H(X)-H\left(X^{(i)}\right)\right) \leq H(X)
$$

Proof:

$$
\begin{aligned}
H(X) & =H\left(X^{(i)}\right)+H\left(X_{i} \mid X^{(i)}\right) \\
& \leq H\left(X^{(i)}\right)+H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Te Sun Han
Since $\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=H(X)$, summing the inequality, we get

$$
(n-1) H(X) \leq \sum_{i=1}^{n} H\left(X^{(i)}\right)
$$

subadditivity of entropy

The entropy of a random variable $\mathbf{Z} \geq \mathbf{0}$ is

$$
\operatorname{Ent}(Z)=\mathbb{E} \Phi(Z)-\Phi(\mathbb{E} Z)
$$

where $\boldsymbol{\Phi}(\mathrm{x})=\mathrm{x} \log \mathrm{x}$. By Jensen's inequality, $\operatorname{Ent}(\mathrm{Z}) \geq \mathbf{0}$.

subadditivity of entropy

The entropy of a random variable $\mathbf{Z} \geq \mathbf{0}$ is

$$
\operatorname{Ent}(Z)=\mathbb{E} \Phi(Z)-\Phi(\mathbb{E} Z)
$$

where $\boldsymbol{\Phi}(\mathrm{x})=\mathrm{x} \log \mathrm{x}$. By Jensen's inequality, $\operatorname{Ent}(\mathrm{Z}) \geq \mathbf{0}$.
Han's inequality implies the following sub-additivity property.
Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent and let $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$, where $\mathbf{f} \geq \mathbf{0}$.
Denote

$$
\operatorname{Ent}^{(i)}(Z)=\mathbb{E}^{(\mathrm{i})} \Phi(Z)-\Phi\left(\mathbb{E}^{(\mathrm{i})} \mathbf{Z}\right)
$$

Then

$$
\operatorname{Ent}(Z) \leq \mathbb{E} \sum_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{Ent}^{(\mathrm{i})}(\mathrm{Z})
$$

a logarithmic sobolev inequality on the hypercube

Let $\mathbf{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ be uniformly distributed over $\{-\mathbf{1}, \mathbf{1}\}^{\mathrm{n}}$. If $\mathrm{f}:\{-\mathbf{1}, \mathbf{1}\}^{\mathrm{n}} \rightarrow \mathbb{R}$ and $\mathrm{Z}=\mathrm{f}(\mathrm{X})$,

$$
\operatorname{Ent}\left(Z^{2}\right) \leq \frac{1}{2} \mathbb{E} \sum_{i=1}^{n}\left(Z-Z_{i}^{\prime}\right)^{2}
$$

The proof uses subadditivity of the entropy and calculus for the case $\mathbf{n}=1$.
Implies Efron-Stein and the edge-isoperimetric inequality.

herbst's argument: exponential concentration

If $\mathbf{f}:\{-\mathbf{1}, \mathbf{1}\}^{\mathbf{n}} \rightarrow \mathbb{R}$, the log-Sobolev inequality may be used with

$$
\mathrm{g}(\mathrm{x})=\mathrm{e}^{\lambda \mathrm{f}(\mathrm{x}) / 2} \quad \text { where } \quad \lambda \in \mathbb{R}
$$

If $F(\lambda)=\mathbb{E} \mathbf{e}^{\lambda Z}$ is the moment generating function of $Z=f(X)$,

$$
\begin{aligned}
\operatorname{Ent}\left(g(X)^{2}\right) & =\lambda \mathbb{E}\left[Z e^{\lambda z}\right]-\mathbb{E}\left[e^{\lambda z}\right] \log \mathbb{E}\left[Z e^{\lambda z}\right] \\
& =\lambda F^{\prime}(\lambda)-F(\lambda) \log F(\lambda)
\end{aligned}
$$

Differential inequalities are obtained for $F(\lambda)$.

herbst's argument

As an example, suppose \mathbf{f} is such that $\sum_{i=1}^{n}\left(\mathbf{Z}-\mathbf{Z}_{\mathbf{i}}^{\prime}\right)_{+}^{2} \leq \mathbf{v}$. Then by the log-Sobolev inequality,

$$
\lambda F^{\prime}(\lambda)-F(\lambda) \log F(\lambda) \leq \frac{v \lambda^{2}}{4} F(\lambda)
$$

If $G(\lambda)=\log F(\lambda)$, this becomes

$$
\left(\frac{\mathrm{G}(\lambda)}{\lambda}\right)^{\prime} \leq \frac{\mathrm{v}}{4}
$$

This can be integrated: $\mathbf{G}(\lambda) \leq \lambda \mathbb{E} \mathbf{Z}+\lambda \mathbf{v} / 4$, so

$$
\mathrm{F}(\lambda) \leq \mathrm{e}^{\lambda \mathbb{E} Z-\lambda^{2} v / 4}
$$

This implies

$$
\mathbb{P}\{\mathbf{Z}>\mathbb{E} \mathbf{Z}+\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} / \mathrm{v}}
$$

herbst's argument

As an example, suppose \mathbf{f} is such that $\sum_{i=1}^{n}\left(\mathbf{Z}-\mathbf{Z}_{\mathbf{i}}^{\prime}\right)_{+}^{2} \leq \mathbf{v}$. Then by the log-Sobolev inequality,

$$
\lambda F^{\prime}(\lambda)-F(\lambda) \log F(\lambda) \leq \frac{v \lambda^{2}}{4} F(\lambda)
$$

If $G(\lambda)=\log F(\lambda)$, this becomes

$$
\left(\frac{\mathrm{G}(\lambda)}{\lambda}\right)^{\prime} \leq \frac{\mathrm{v}}{4}
$$

This can be integrated: $\mathbf{G}(\lambda) \leq \lambda \mathbb{E} \mathbf{Z}+\lambda \mathbf{v} / 4$, so

$$
\mathrm{F}(\lambda) \leq \mathrm{e}^{\lambda \mathbb{E} Z-\lambda^{2} v / 4}
$$

This implies

$$
\mathbb{P}\{\mathbf{Z}>\mathbb{E} \mathbf{Z}+\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} / \mathrm{v}}
$$

Stronger than the bounded differences inequality!

gaussian log-sobolev and concentration inequalities

Let $\mathbf{X}=\left(\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ be a vector of i.i.d. standard normal If
$\mathbf{f}: \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}$ and $\mathbf{Z}=\mathbf{f}(\mathbf{X})$,

$$
\operatorname{Ent}\left(Z^{2}\right) \leq 2 \mathbb{E}\left[\|\nabla f(X)\|^{2}\right]
$$

This can be proved using the central limit theorem and the Bernoulli log-Sobolev inequality.

gaussian log-sobolev and concentration inequalities

Let $\mathbf{X}=\left(\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ be a vector of i.i.d. standard normal If
$\mathbf{f}: \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}$ and $\mathbf{Z}=\mathbf{f}(\mathbf{X})$,

$$
\operatorname{Ent}\left(Z^{2}\right) \leq 2 \mathbb{E}\left[\|\nabla f(X)\|^{2}\right]
$$

This can be proved using the central limit theorem and the Bernoulli log-Sobolev inequality.
It implies the Gaussian concentration inequality:
Suppose \mathbf{f} is Lipschitz: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\mathbf{n}}$,

$$
|f(x)-f(y)| \leq L\|x-y\|
$$

Then, for all $\mathbf{t}>\mathbf{0}$,

$$
\mathbb{P}\{f(X)-\mathbb{E} f(X) \geq t\} \leq e^{-\mathrm{t}^{2} /\left(2 \mathrm{~L}^{2}\right)}
$$

an application: supremum of a gaussian process
Let $\left(\mathbf{X}_{\mathbf{t}}\right)_{\mathbf{t} \in \mathcal{T}}$ be an almost surely continuous centered Gaussian process. Let $\mathbf{Z}=\sup _{\mathbf{t} \in \mathcal{T}} \mathbf{X}_{\mathbf{t}}$. If

$$
\sigma^{2}=\sup _{t \in \mathcal{T}}\left(\mathbb{E}\left[X_{t}^{2}\right]\right)
$$

then

$$
\mathbb{P}\{|\mathbf{Z}-\mathbb{E} \mathbf{Z}| \geq \mathbf{u}\} \leq 2 \mathrm{e}^{-\mathbf{u}^{2} /\left(2 \sigma^{2}\right)}
$$

an application: supremum of a gaussian process

Let $\left(\mathbf{X}_{\mathbf{t}}\right)_{\mathbf{t} \in \mathcal{T}}$ be an almost surely continuous centered Gaussian process. Let $\mathbf{Z}=\sup _{\mathbf{t} \in \mathcal{T}} \mathbf{X}_{\mathbf{t}}$. If

$$
\sigma^{2}=\sup _{\mathbf{t} \in \mathcal{T}}\left(\mathbb{E}\left[X_{t}^{2}\right]\right)
$$

then

$$
\mathbb{P}\{|\mathbf{Z}-\mathbb{E} \mathbf{Z}| \geq \mathbf{u}\} \leq 2 \mathbf{e}^{-\mathbf{u}^{2} /\left(2 \sigma^{2}\right)}
$$

Proof: We may assume $\mathcal{T}=\{\mathbf{1}, \ldots, \mathbf{n}\}$. Let $\boldsymbol{\Gamma}$ be the covariance matrix of $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$. Let $\mathbf{A}=\boldsymbol{\Gamma}^{\mathbf{1 / 2}}$. If \mathbf{Y} is a standard normal vector, then

$$
f(Y)=\max _{i=1, \ldots, n}(A Y)_{i} \stackrel{\text { distr. }}{=} \max _{i=1, \ldots, n} X_{i}
$$

By Cauchy-Schwarz,

$$
\begin{aligned}
\left|(A u)_{i}-(A v)_{i}\right| & =\left|\sum_{j} A_{i, j}\left(u_{j}-v_{j}\right)\right| \leq\left(\sum_{j} A_{i, j}^{2}\right)^{1 / 2}\|u-v\| \\
& \leq \sigma\|u-v\|
\end{aligned}
$$

beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not available.

Solution: modified logarithmic Sobolev inequalities. Suppose $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ are independent. Let $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ and $\mathbf{Z}_{\mathbf{i}}=\mathbf{f}_{\mathbf{i}}\left(\mathbf{X}^{(\mathbf{i})}\right)=\mathrm{f}_{\mathrm{i}}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{i}-1}, \mathbf{X}_{\mathbf{i + 1}}, \ldots, \mathbf{X}_{\mathrm{n}}\right)$.

Let $\phi(\mathrm{x})=\mathrm{e}^{\mathrm{x}}-\mathrm{x}-\mathbf{1}$. Then for all $\boldsymbol{\lambda} \in \mathbb{R}$,

$$
\begin{aligned}
& \lambda \mathbb{E}\left[\mathrm{Ze}^{\lambda \mathrm{Z}}\right]-\mathbb{E}\left[\mathrm{e}^{\lambda \mathrm{Z}}\right] \log \mathbb{E}\left[\mathrm{e}^{\lambda \mathrm{z}}\right] \\
& \leq \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbb{E}\left[\mathrm{e}^{\lambda \mathrm{Z}} \phi\left(-\lambda\left(\mathrm{Z}-\mathrm{Z}_{\mathrm{i}}\right)\right)\right] .
\end{aligned}
$$

Michel Ledoux

the entropy method

Define $\mathbf{Z}_{\mathbf{i}}=\inf _{\mathbf{x}_{\mathbf{i}}^{\prime}} \mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{x}_{\mathbf{i}}^{\prime}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ and suppose

$$
\sum_{i=1}^{n}\left(Z-Z_{i}\right)^{2} \leq v
$$

Then for all $\mathbf{t}>\mathbf{0}$,

$$
\mathbb{P}\{Z-\mathbb{E} Z>t\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathrm{v})}
$$

the entropy method

Define $\mathbf{Z}_{\mathbf{i}}=\inf _{\mathbf{x}_{\mathbf{i}}^{\prime}} \mathbf{f}\left(\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{i}}^{\prime}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ and suppose

$$
\sum_{i=1}^{n}\left(Z-Z_{i}\right)^{2} \leq v
$$

Then for all $\mathbf{t}>\mathbf{0}$,

$$
\mathbb{P}\{Z-\mathbb{E} Z>\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathrm{v})}
$$

This implies the bounded differences inequality and much more.
example: the largest eigenvalue of a symmetric matrix Let $\mathbf{A}=\left(\mathbf{X}_{\mathbf{i}, \mathbf{j}}\right)_{\mathbf{n} \times \mathbf{n}}$ be symmetric, the $\mathbf{X}_{\mathbf{i}, \mathbf{j}}$ independent $(\mathbf{i} \leq \mathbf{j})$ with $\left|\mathbf{X}_{\mathrm{i}, \mathrm{j}}\right| \leq 1$. Let

$$
\mathrm{Z}=\lambda_{1}=\sup _{\mathrm{u}:\|\mathrm{u}\|=1} \mathbf{u}^{\top} \mathbf{A u}
$$

and suppose \mathbf{v} is such that $\mathbf{Z}=\mathbf{v}^{\mathbf{\top}} \mathbf{A} \mathbf{v}$.
$\mathbf{A}_{i, j}^{\prime}$ is obtained by replacing $\mathbf{X}_{i, j}$ by $\mathbf{x}_{i, j}^{\prime}$. Then

$$
\begin{aligned}
\left(Z-Z_{i, j}\right)_{+} & \leq\left(v^{\top} A v-v^{\top} A_{i, j}^{\prime} v\right) \mathbb{1}_{z>Z_{i, j}} \\
& =\left(v^{\top}\left(A-A_{i, j}^{\prime}\right) v\right) \mathbb{1}_{z>z_{i, j}} \leq 2\left(v_{i} v_{j}\left(X_{i, j}-X_{i, j}^{\prime}\right)\right)_{+} \\
& \leq 4\left|v_{i} v_{j}\right|
\end{aligned}
$$

Therefore,
$\sum_{1 \leq i \leq j \leq n}\left(Z-Z_{i, j}^{\prime}\right)_{+}^{2} \leq \sum_{1 \leq i \leq j \leq n} 16\left|v_{i} v_{j}\right|^{2} \leq 16\left(\sum_{i=1}^{n} v_{i}^{2}\right)^{2}=16$.

example: convex lipschitz functions

Let $\mathbf{f}:[0,1]^{\mathrm{n}} \rightarrow \mathbb{R}$ be a convex function. Let $\mathbf{Z}_{\mathbf{i}}=\inf _{\mathrm{x}_{\mathrm{i}}^{\prime}} \mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{x}_{\mathbf{i}}^{\prime}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ and let $\mathbf{X}_{\mathbf{i}}^{\prime}$ be the value of $\mathbf{x}_{\mathbf{i}}^{\prime}$ for which the minimum is achieved. Then, writing $\bar{X}^{(i)}=\left(X_{1}, \ldots, X_{i-1}, X_{i}^{\prime}, X_{i+1}, \ldots, X_{n}\right)$,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(Z-Z_{i}\right)^{2}= & \sum_{i=1}^{n}\left(f(X)-f\left(\bar{X}^{(i)}\right)^{2}\right. \\
\leq & \sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}}(X)\right)^{2}\left(X_{i}-X_{i}^{\prime}\right)^{2} \\
& (\text { by convexity }) \\
\leq & \sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}}(X)\right)^{2} \\
= & \|\nabla f(X)\|^{2} \leq L^{2}
\end{aligned}
$$

self-bounding functions

Suppose Z satisfies

$$
\mathbf{0} \leq \mathbf{Z}-\mathbf{Z}_{\mathbf{i}} \leq \mathbf{1} \quad \text { and } \quad \sum_{\mathbf{i}=1}^{n}\left(\mathbf{Z}-\mathbf{Z}_{\mathbf{i}}\right) \leq \mathbf{Z}
$$

Recall that $\operatorname{Var}(\mathbf{Z}) \leq \mathbb{E} \mathbf{Z}$. We have much more:

$$
\mathbb{P}\{\mathbf{Z}>\mathbb{E} \mathbf{Z}+\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathbb{E} \mathbf{Z}+2 \mathrm{t} / 3)}
$$

and

$$
\mathbb{P}\{\mathbf{Z}<\mathbb{E} \mathbf{Z}-\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathbb{E} \mathbf{Z})}
$$

self-bounding functions

Suppose \mathbf{Z} satisfies

$$
\mathbf{0} \leq \mathbf{Z}-\mathbf{Z}_{\mathbf{i}} \leq \mathbf{1} \quad \text { and } \quad \sum_{\mathbf{i}=1}^{n}\left(\mathbf{Z}-\mathbf{Z}_{\mathbf{i}}\right) \leq \mathbf{Z}
$$

Recall that $\operatorname{Var}(\mathbf{Z}) \leq \mathbb{E} \mathbf{Z}$. We have much more:

$$
\mathbb{P}\{\mathbf{Z}>\mathbb{E} \mathbf{Z}+\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathbb{E} \mathbf{Z}+2 \mathrm{t} / 3)}
$$

and

$$
\mathbb{P}\{\mathbf{Z}<\mathbb{E} \mathbf{Z}-\mathrm{t}\} \leq \mathrm{e}^{-\mathbf{t}^{2} /(2 \mathbb{E} \mathbf{Z})}
$$

Rademacher averages and the random VC dimension are self bounding.

self-bounding functions

Suppose \mathbf{Z} satisfies

$$
\mathbf{0} \leq \mathbf{Z}-\mathbf{Z}_{\mathbf{i}} \leq \mathbf{1} \quad \text { and } \quad \sum_{\mathbf{i}=1}^{n}\left(\mathbf{Z}-\mathbf{Z}_{\mathbf{i}}\right) \leq \mathbf{Z}
$$

Recall that $\operatorname{Var}(\mathbf{Z}) \leq \mathbb{E} \mathbf{Z}$. We have much more:

$$
\mathbb{P}\{\mathbf{Z}>\mathbb{E} \mathbf{Z}+\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathbb{E} \mathbf{Z}+2 \mathrm{t} / 3)}
$$

and

$$
\mathbb{P}\{\mathbf{Z}<\mathbb{E} \mathbf{Z}-\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathbb{E} \mathbf{Z})}
$$

Rademacher averages and the random VC dimension are self bounding.

Configuration functions.

weakly self-bounding functions

$\mathrm{f}: \mathcal{X}^{\mathrm{n}} \rightarrow[0, \infty)$ is weakly (\mathbf{a}, \mathbf{b})-self-bounding if there exist $\mathrm{f}_{\mathrm{i}}: \mathcal{X}^{\mathrm{n}-1} \rightarrow[0, \infty)$ such that for all $\mathrm{x} \in \mathcal{X}^{\mathrm{n}}$,

$$
\sum_{i=1}^{n}\left(f(x)-f_{i}\left(x^{(i)}\right)\right)^{2} \leq a f(x)+b
$$

weakly self-bounding functions

$\mathbf{f}: \mathcal{X}^{\mathbf{n}} \rightarrow[0, \infty)$ is weakly (\mathbf{a}, \mathbf{b})-self-bounding if there exist $\mathrm{f}_{\mathrm{i}}: \mathcal{X}^{\mathrm{n}-1} \rightarrow[0, \infty)$ such that for all $\mathrm{x} \in \mathcal{X}^{\mathrm{n}}$,

$$
\sum_{i=1}^{n}\left(f(x)-f_{i}\left(x^{(i)}\right)\right)^{2} \leq a f(x)+b
$$

Then

$$
\mathbb{P}\{Z \geq \mathbb{E} Z+t\} \leq \exp \left(-\frac{\mathbf{t}^{2}}{2(\mathbf{a} \mathbb{E} Z+b+a t / 2)}\right)
$$

weakly self-bounding functions

$\mathbf{f}: \mathcal{X}^{\mathbf{n}} \rightarrow[0, \infty)$ is weakly (\mathbf{a}, \mathbf{b})-self-bounding if there exist $\mathrm{f}_{\mathrm{i}}: \mathcal{X}^{\mathrm{n}-1} \rightarrow[0, \infty)$ such that for all $\mathrm{x} \in \mathcal{X}^{\mathrm{n}}$,

$$
\sum_{i=1}^{n}\left(f(x)-f_{i}\left(x^{(i)}\right)\right)^{2} \leq a f(x)+b
$$

Then

$$
\mathbb{P}\{Z \geq \mathbb{E} Z+t\} \leq \exp \left(-\frac{t^{2}}{2(a \mathbb{E} Z+b+a t / 2)}\right)
$$

If, in addition, $\mathbf{f}(\mathbf{x})-\mathbf{f}_{\mathbf{i}}\left(\mathbf{x}^{(\mathrm{i})}\right) \leq \mathbf{1}$, then for $\mathbf{0}<\mathbf{t} \leq \mathbb{E} \mathbf{Z}$,

$$
\mathbb{P}\{Z \leq \mathbb{E} Z-\mathrm{t}\} \leq \exp \left(-\frac{\mathrm{t}^{2}}{2\left(\mathrm{a} \mathbb{E} Z+\mathrm{b}+\mathrm{c}_{-} \mathrm{t}\right)}\right)
$$

where $c=(3 a-1) / 6$.

the isoperimetric view

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ have independent components, taking values in $\mathcal{X}^{\mathbf{n}}$. Let
$\mathrm{A} \subset \mathcal{X}^{\mathrm{n}}$.
The Hamming distance of \mathbf{X} to \mathbf{A} is

$$
d(X, A)=\min _{y \in A} d(X, y)=\min _{y \in A} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \neq y_{i}}
$$

Michel Talagrand

the isoperimetric view

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ have independent components, taking values in \mathcal{X}^{n}. Let $\mathrm{A} \subset \mathcal{X}^{\mathrm{n}}$.
The Hamming distance of \mathbf{X} to \mathbf{A} is

$$
d(X, A)=\min _{y \in A} d(X, y)=\min _{y \in A} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \neq y_{i}}
$$

Michel Talagrand

$$
\mathbb{P}\left\{d(X, A) \geq t+\sqrt{\frac{n}{2} \log \frac{1}{\mathbb{P}[A]}}\right\} \leq e^{-2 t^{2} / n}
$$

the isoperimetric view

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ have independent components, taking values in \mathcal{X}^{n}. Let $\mathrm{A} \subset \mathcal{X}^{\mathrm{n}}$.
The Hamming distance of \mathbf{X} to \mathbf{A} is

$$
\begin{aligned}
d(X, A) & =\min _{y \in A} d(X, y)=\min _{y \in A} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \neq y_{i}} \\
& \mathbb{P}\left\{d(X, A) \geq t+\sqrt{\frac{n}{2} \log \frac{1}{\mathbb{P}[A]}}\right\} \leq e^{-2 t^{2} / n}
\end{aligned}
$$

Concentration of measure!

the isoperimetric view

Proof: By the bounded differences inequality,

$$
\mathbb{P}\{\mathbb{E} \mathbf{d}(\mathbf{X}, \mathbf{A})-\mathbf{d}(\mathbf{X}, \mathbf{A}) \geq \mathrm{t}\} \leq \mathrm{e}^{-2 \mathbf{t}^{2} / \mathrm{n}}
$$

Taking $\mathbf{t}=\mathbb{E} \mathbf{d}(\mathbf{X}, \mathbf{A})$, we get

$$
\mathbb{E} d(X, A) \leq \sqrt{\frac{n}{2} \log \frac{1}{\mathbb{P}\{A\}}}
$$

By the bounded differences inequality again,

$$
\mathbb{P}\left\{d(X, A) \geq t+\sqrt{\frac{n}{2} \log \frac{1}{\mathbb{P}\{A\}}}\right\} \leq e^{-2 t^{2} / n}
$$

talagrand's convex distance

The weighted Hamming distance is

$$
d_{\alpha}(x, A)=\inf _{y \in A} d_{\alpha}(x, y)=\inf _{y \in A} \sum_{i: x_{i} \neq y_{i}}\left|\alpha_{i}\right|
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right)$. The same argument as before gives

$$
\mathbb{P}\left\{\mathrm{d}_{\alpha}(\mathrm{X}, \mathrm{~A}) \geq \mathrm{t}+\sqrt{\frac{\|\alpha\|^{2}}{2} \log \frac{1}{\mathbb{P}\{\mathrm{~A}\}}}\right\} \leq \mathrm{e}^{-2 \mathrm{t}^{2} /\|\alpha\|^{2}}
$$

This implies

$$
\sup _{\alpha:\|\alpha\|=1} \min \left(\mathbb{P}\{\mathbf{A}\}, \mathbb{P}\left\{\mathbf{d}_{\alpha}(\mathbf{X}, \mathbf{A}) \geq \mathrm{t}\right\}\right) \leq \mathrm{e}^{-\mathrm{t}^{2} / 2}
$$

convex distance inequality

convex distance:

$$
\begin{aligned}
& \mathbf{d}_{\mathrm{T}}(\mathrm{x}, \mathrm{~A})=\sup _{\alpha \in[0, \infty)^{\mathrm{n}}:\|\alpha\|=1} \mathrm{~d}_{\alpha}(\mathrm{x}, \mathrm{~A}) \\
& \mathbb{P}\{\mathbf{A}\} \mathbb{P}\left\{\mathbf{d}_{\mathrm{T}}(\mathrm{X}, \mathbf{A}) \geq \mathrm{t}\right\} \leq \mathrm{e}^{-\mathrm{t}^{2} / 4}
\end{aligned}
$$

convex distance inequality

convex distance:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{T}}(\mathrm{x}, \mathrm{~A})=\sup _{\alpha \in[0, \infty)^{\mathrm{n}}:\|\alpha\|=1} \mathrm{~d}_{\alpha}(\mathrm{x}, \mathrm{~A}) \\
& \mathbb{P}\{\mathbf{A}\} \mathbb{P}\left\{\mathrm{d}_{\mathrm{T}}(\mathrm{X}, \mathrm{~A}) \geq \mathrm{t}\right\} \leq \mathrm{e}^{-\mathrm{t}^{2} / 4}
\end{aligned}
$$

Follows from the fact that $\mathbf{d}_{\mathbf{T}}(X, A)^{2}$ is $(4,0)$ weakly self bounding (by a saddle point representation of \mathbf{d}_{T}).

Talagrand's original proof was different.

convex lipschitz functions

For $\mathbf{A} \subset[0,1]^{\mathrm{n}}$ and $\mathrm{x} \in[0,1]^{\mathrm{n}}$, define

$$
D(x, A)=\inf _{y \in A}\|x-y\| .
$$

If \mathbf{A} is convex, then

$$
\mathrm{D}(\mathrm{x}, \mathrm{~A}) \leq \mathrm{d}_{\mathrm{T}}(\mathrm{x}, \mathrm{~A}) .
$$

convex lipschitz functions

For $\mathbf{A} \subset[0,1]^{\mathrm{n}}$ and $\mathrm{x} \in[0,1]^{\mathrm{n}}$, define

$$
D(x, A)=\inf _{y \in A}\|x-y\| .
$$

If \mathbf{A} is convex, then

$$
\mathrm{D}(\mathrm{x}, \mathrm{~A}) \leq \mathrm{d}_{\mathrm{T}}(\mathrm{x}, \mathrm{~A}) .
$$

Proof:
$\mathrm{D}(\mathrm{x}, \mathrm{A})=\inf _{\nu \in \mathcal{M}(\mathrm{A})}\left\|\mathrm{x}-\mathbb{E}_{\nu} \mathbf{Y}\right\| \quad$ (since \mathbf{A} is convex)

$$
\begin{aligned}
& \leq \inf _{\nu \in \mathcal{M}(\mathrm{A})} \sqrt{\sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\mathbb{E}_{\nu} \mathbb{1}_{\mathrm{x}_{\mathrm{j}} \neq \mathrm{Y}_{\mathrm{j}}}\right)^{2}} \quad\left(\text { since } \mathrm{x}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{j}} \in[0,1]\right) \\
& =\inf _{\nu \in \mathcal{M}(\mathrm{A})} \sup _{\alpha:\|\alpha\| \leq 1} \sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{\mathrm{j}} \mathbb{E}_{\nu} \mathbb{1}_{\mathrm{x}_{\mathrm{j}} \neq \mathrm{Y}_{\mathrm{j}}} \quad \text { (by Cauchy-Schwarz) } \\
& =\mathrm{d}_{\mathrm{T}}(\mathrm{x}, \mathrm{~A}) \quad \text { (by minimax theorem) } .
\end{aligned}
$$

convex lipschitz functions

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ have independent components taking values in $[\mathbf{0}, \mathbf{1}]$. Let $\mathbf{f}:[0,1]^{\mathbf{n}} \rightarrow \mathbb{R}$ be quasi-convex such that $|f(x)-f(y)| \leq\|x-y\|$. Then

$$
\mathbb{P}\{f(X)>\mathbb{M} f(X)+t\} \leq 2 e^{-t^{2} / 4}
$$

and

$$
\mathbb{P}\left\{\mathbf{f}(\mathrm{X})<\mathbb{M}[\mathbf{f}(\mathrm{X})-\mathrm{t}\} \leq 2 \mathrm{e}^{-\mathbf{t}^{2} / 4}\right.
$$

convex lipschitz functions

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ have independent components taking values in $[\mathbf{0}, \mathbf{1}]$. Let $\mathbf{f}:[\mathbf{0}, \mathbf{1}]^{\mathbf{n}} \rightarrow \mathbb{R}$ be quasi-convex such that $|f(x)-f(y)| \leq\|x-y\|$. Then

$$
\mathbb{P}\{f(X)>\mathbb{M} f(X)+t\} \leq 2 e^{-t^{2} / 4}
$$

and

$$
\mathbb{P}\{f(X)<\mathbb{M} f(X)-t\} \leq 2 e^{-t^{2} / 4}
$$

Proof: Let $\mathbf{A}_{\mathbf{s}}=\{\mathbf{x}: \mathbf{f}(\mathbf{x}) \leq \mathbf{s}\} \subset[\mathbf{0}, \mathbf{1}]^{\mathbf{n}}$. $\mathbf{A}_{\mathbf{s}}$ is convex. Since \mathbf{f} is Lipschitz,

$$
\mathbf{f}(\mathrm{x}) \leq \mathrm{s}+\mathrm{D}\left(\mathrm{x}, \mathrm{~A}_{\mathrm{s}}\right) \leq \mathrm{s}+\mathrm{d}_{\mathrm{T}}\left(\mathrm{x}, \mathrm{~A}_{\mathrm{s}}\right)
$$

By the convex distance inequality,

$$
\mathbb{P}\{\mathbf{f}(\mathrm{X}) \geq \mathrm{s}+\mathrm{t}\} \mathbb{P}\{\mathrm{f}(\mathrm{X}) \leq \mathrm{s}\} \leq \mathrm{e}^{-\mathrm{t}^{2} / 4}
$$

Take $\mathbf{s}=\mathbb{M} \mathbf{f}(\mathbf{X})$ for the upper tail and $\mathbf{s}=\mathbb{M} \mathbf{f}(\mathbf{X})-\mathbf{t}$ for the lower tail.

Stéphane Boucheron
Gábor Lugosi
Pascal Massart

CONCENTRATION

 INEQUALITIES

