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Aim:

The course is intended to give an overview of the
kernel approach to pattern analysis. This will cover:

• Why linear pattern functions?

• Why kernel approach?

• How to plug and play with the different
components of a kernel-based pattern analysis
system?
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What won’t be included:

• Other approaches to Pattern Analysis

• Complete History

• Bayesian view of kernel methods

• Most recent developments
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OVERALL STRUCTURE

Part 1: Introduction to the Kernel methods approach.

Part 2: Projections and subspaces in the feature
space.

Part 3: Stability of Pattern Functions with the
example of Support Vector Machines.

Part 4: Other learning algorithms: novelty detection,
boosting and multiple kernel learning.

Part 5: Kernel design strategies.
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Part 1

• Kernel methods approach

• Worked example of kernel Ridge Regression

• Properties of kernels.
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Kernel methods
Kernel methods (re)introduced in 1990s with
Support Vector Machines

• Linear functions but in high dimensional spaces
equivalent to non-linear functions in the input
space

• Statistical analysis showing large margin can
overcome curse of dimensionality

• Extensions rapidly introduced for many other
tasks other than classification
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Kernel methods approach

• Data embedded into a Euclidean feature (or
Hilbert) space

• Linear relations are sought among the images of
the data

• Algorithms implemented so that only require
inner products between vectors

• Embedding designed so that inner products of
images of two points can be computed directly
by an efficient ‘short-cut’ known as the kernel.
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Worked example: Ridge Regression

Consider the problem of finding a homogeneous
real-valued linear function

g(x) = ⟨w,x⟩ = x′w =

n∑
i=1

wixi,

that best interpolates a given training set

S = {(x1, y1), . . . , (xm, ym)}

of points xi from X ⊆ Rn with corresponding labels
yi in Y ⊆ R.

ISSML, June 2013 7



Possible pattern function

• Measures discrepancy between function output
and correct output – squared to ensure always
positive:

fg((x, y)) = (g(x)− y)2

Note that the pattern function fg is not itself a
linear function, but a simple functional of the
linear functions g.

• We introduce notation: matrix X has rows the m
examples of S. Hence we can write

ξ = y −Xw

for the vector of differences between g(xi) and yi.
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Optimising the choice of g

Need to ensure flexibility of g is controlled –
controlling the norm of w proves effective:

min
w

Lλ(w, S) = min
w

λ∥w∥2 + ∥ξ∥2,

where we can compute

∥ξ∥2 = ⟨y −Xw,y −Xw⟩
= y′y − 2w′X′y +w′X′Xw

Setting derivative of Lλ(w, S) equal to 0 gives

X′Xw + λw = (X′X+ λIn)w = X′y
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Primal solution

We get the primal solution weight vector:

w = (X′X+ λIn)
−1

X′y

and regression function

g(x) = x′w = x′ (X′X+ λIn)
−1

X′y
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Dual solution
A dual solution should involve only computation of
inner products – this is achieved by expressing the
weight vector as a linear combination of the training
examples:

X′Xw + λw = X′y implies

w =
1

λ
(X′y −X′Xw) = X′1

λ
(y −Xw) = X′α,

where

α =
1

λ
(y −Xw) (1)

or equivalently

w =

m∑
i=1

αixi
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Dual solution

Substituting w = X′α into equation (1) we obtain:

λα = y −XX′α

implying
(XX′ + λIm)α = y

This gives the dual solution:

α = (XX′ + λIm)
−1

y

and regression function

g(x) = x′w = x′X′α =

m∑
i=1

αi⟨x,xi⟩
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Key ingredients of dual solution

Step 1: Compute

α = (K+ λIm)
−1

y

where K = XX′ that is Kij = ⟨xi,xj⟩

Step 2: Evaluate on new point x by

g(x) =

m∑
i=1

αi⟨x,xi⟩

Important observation: Both steps only involve
inner products
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Applying the ‘kernel trick’

Since the computation only involves inner products,
we can substitute for all occurrences of ⟨·, ·⟩ a kernel
function κ that computes:

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩

and we obtain an algorithm for ridge regression in
the feature space F defined by the mapping

ϕ : x 7−→ ϕ(x) ∈ F

Note if ϕ is the identity this remains in the input
space.
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A simple kernel example
The simplest non-trivial kernel function is the
quadratic kernel:

κ(x, z) = ⟨x, z⟩2

involving just one extra operation. But surprisingly
this kernel function now corresponds to a complex
feature mapping:

κ(x, z) = (x′z)2 = z′(xx′)z

= ⟨vec(zz′), vec(xx′)⟩

where vec(A) stacks the columns of the matrix A
on top of each other. Hence, κ corresponds to the
feature mapping

ϕ : x 7−→ vec(xx′)
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Implications of the kernel trick

• Consider for example computing a regression
function over 1000 images represented by pixel
vectors – say 32× 32 = 1024.

• By using the quadratic kernel we implement the
regression function in a 1, 000, 000 dimensional
space

• but actually using less computation for the
learning phase than we did in the original space.
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Implications of kernel algorithms

• Can perform linear regression in very high-
dimensional (even infinite dimensional) spaces
efficiently.

• This is equivalent to performing non-linear
regression in the original input space: for
example quadratic kernel leads to solution of the
form

g(x) =
m∑
i=1

αi⟨xi,x⟩2

that is a quadratic polynomial function of the
components of the input vector x.

• Using these high-dimensional spaces must
surely come with a health warning, what about
the curse of dimensionality?
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Part 2

• Simple classification algorithm

• Principal components analysis.

• Kernel canonical correlation analysis.
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Simple classification algorithm

• Consider finding the centres of mass of positive
and negative examples and classifying a test
point by measuring which is closest

h(x) = sgn
(
∥ϕ(x)− ϕS−∥

2 − ∥ϕ(x)− ϕS+∥
2
)

• we can express as a function of kernel
evaluations

h(x) = sgn

 1

m+

m+∑
i=1

κ(x,xi)−
1

m−

m∑
i=m++1

κ(x,xi)− b

,

where

b =
1

2m2
+

m+∑
i,j=1

κ(xi,xj)−
1

2m2
−

m∑
i,j=m++1

κ(xi,xj)

ISSML, June 2013 19



Simple classification algorithm

• equivalent to dividing the space with a hyperplane
perpendicular to the line half way between the
two centres with vector given by

w =
1

m+

m+∑
i=1

ϕ(xi)−
1

m−

m∑
i=m++1

ϕ(xi)

• Function is the difference in likelihood of the
Parzen window density estimators for positive
and negative examples

• We will see some examples of the performance
of this algorithm in a moment.
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Variance of projections

• Consider projections of the datapoints ϕ(xi) onto
a unit vector direction v in the feature space:
average is given by

µv = Ê [∥Pv(ϕ(x))∥] = Ê [v′ϕ(x)] = v′ϕS

of course this is 0 if the data has been centred.

• average squared is given by

Ê
[
∥Pv(ϕ(x))∥2

]
= Ê [v′ϕ(x)ϕ(x)′v] =

1

m
v′X′Xv
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Variance of projections

• Now suppose v has the dual representation v =
X′α. Average is given by

µv =
1

m
α′XX′j =

1

m
α′Kj

• average squared is given by

1

m
v′X′Xv =

1

m
α′XX′XX′α =

1

m
α′K2α

• Hence, variance in direction v is given by

σ2
v =

1

m
α′K2α− 1

m2
(α′Kj)2
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Fisher discriminant

• The Fisher discriminant is a thresholded linear
classifier:

f(x) = sgn(⟨w, ϕ(x)⟩+ b

where w is chosen to maximise the quotient:

J(w) =
(µ+

w − µ−
w)

2

(σ+
w)2 + (σ−

w)2

• As with Ridge regression it makes sense to
regularise if we are working in high-dimensional
kernel spaces, so maximise

J(w) =
(µ+

w − µ−
w)

2

(σ+
w)2 + (σ−

w)2 + λ∥w∥2
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Fisher discriminant

• Using the results we now have we can substitute
dual expressions for all of these quantities and
solve using lagrange multipliers.

• The resulting classifier has dual variables

α = (BK+ λI)−1y

where B = D−C with

Cij =

 2m−/(mm+) if yi = 1 = yj
2m+/(mm−) if yi = −1 = yj
0 otherwise
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and

D =

 2m−/m if i = j and yi = 1
2m+/m if i = j and yi = −1
0 otherwise

and b = 0.5αKt with

ti =

 1/m+ if yi = 1
1/m− if yi = −1
0 otherwise

giving a decision function

f(x) = sgn

(
m∑
i=1

αiκ(xi,x)− b

)
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Preprocessing

• Corresponds to feature selection, or learning the
feature space

• Note that in kernel methods the feature
space is only determined up to orthogonal
transformations (change of basis):

ϕ̂(x) = Uϕ(x)

for some orthogonal transformation U (U′U =
I = UU′), then

κ̂(x, z) = ⟨Uϕ(x),Uϕ(z)⟩ = ϕ(x)′U′Uϕ(z) = ϕ(x)′ϕ(z) = κ(x, z)

• so feature selection in a kernel defined feature
space is eqivalent to subspace projection
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Subspace methods

• Principal components analysis: choose directions
to maximise variance in the training data

• Canonical correlation analysis: choose directions
to maximise correlations between two different
views of the same objects

• Gram-Schmidt: greedily choose directions
according to largest residual norms (not covered)

• Partial least squares: greedily choose directions
with maximal covariance with the target (not
covered)

In all cases we need kernel versions in order to
apply these methods in high-dimensional kernel
defined feature spaces
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Principal Components Analysis

• PCA is a subspace method – that is it involves
projecting the data into a lower dimensional
space.

• Subspace is chosen to ensure maximal variance
of the projections:

w = argmaxw:∥w∥=1w
′X′Xw

• This is equivalent to maximising the Raleigh
quotient:

w′X′Xw

w′w
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Principal Components Analysis

• We can optimise using Lagrange multipliers in
order to remove the contraints:

L(w, λ) = w′X′Xw − λw′w

taking derivatives wrt w and setting equal to 0
gives:

X′Xw = λw

implying w is an eigenvector of X′X.

• Note that

λ = w′X′Xw =

m∑
i=1

⟨w,xi⟩2
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Principal Components Analysis

• So principal components analysis performs an
eigenvalue decomposition of X′X and projects
into the space spanned by the first k eigenvectors

• Captures a total of

k∑
i=1

λi

of the overall variance:

m∑
i=1

∥xi∥2 =
n∑

i=1

λi = tr(K)
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Kernel PCA

• We would like to find a dual representation
of the principal eigenvectors and hence of the
projection function.

• Suppose that w, λ ̸= 0 is an eigenvector/eigenvalue
pair for X′X, then Xw, λ is for XX′:

(XX′)Xw = X(X′X)w = λXw

• and vice versa α, λ → X′α, λ

(X′X)X′α = X′(XX′)α = λX′α

• Note that we get back to where we started if we
do it twice.
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Kernel PCA

• Hence, 1-1 correspondence between eigenvectors
corresponding to non-zero eigenvalues, but note
that if ∥α∥ = 1

∥X′α∥2 = α′XX′α = α′Kα = λ

so if αi, λi, i = 1, . . . , k are first k eigenvectors/values
of K

1√
λi

αi

are dual representations of first k eigenvectors
w1, . . . ,wk of X′X with same eigenvalues.

• Computing projections:

⟨wi, ϕ(x)⟩ = 1√
λi

⟨X′αi, ϕ(x)⟩ = 1√
λi

m∑
j=1

αi
jκ(xi,x)
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Kernel CCA

• Canonical correlation analysis finds correlations
between different views of the same object:

x 7−→ (ϕa(x), ϕb(x))

• Examples:

– documents in two languages
– image and its caption
– brain scan and corresponding activity description

• Seek wa creating feature xa = w′
aϕa(x) and wb

creating feature xb = w′
bϕb(x) that maximise:

ρ =
Ê[xaxb]√
Ê[x2

a]Ê[x2
b]

=
Ê[w′

aϕa(x)ϕb(x)
′wb]√

Ê[(w′
aϕa(x))2]Ê[(w′

aϕa(x))2]
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Kernel CCA

• Using our standard notation

ρ =
w′

aX
′
aXbwb√

w′
aX

′
aXawaw′

bX
′
bXbwb

• Since invariant to rescalings we can set two
factors in denominator equal to 1. Using
Lagrange multipliers obtain L(wa,wb, λa, λb) as

w′
aX

′
aXbwb −

λa

2
w′

aX
′
aXawa −

λb

2
w′

bX
′
bXbwb

• Gives coupled equations

X′
aXbwb = λaX

′
aXawa and w′

aX
′
aXb = λbw

′
bX

′
bXb
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Kernel CCA

• Simple to verify that λa = λb

• Resulting in generalised eigenvalue problem:(
0 X′

aXb

X′
bXa 0

)(
wa

wb

)
= λ

(
X′

aXa 0
0 X′

bXb

)(
wa

wb

)

• We would like to make a kernel version of this
procedure – but must ensure that the flexibility is
controlled to rule out spurious correlations:

ρ = max
wa,wb

w′
aX

′
aXbwb

subject to: (1− τ)w′
aX

′
aXawa + τw′

awa = 1

and (1− τ)w′
bX

′
bXbwb + τw′

bwb = 1
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Kernel CCA

• We now dualise by letting wa = X′
aα and wb =

X′
bβ to obtain:

ρ = max
α,β

α′KaKbβ

subject to: (1− τ)α′K2
aα+ τα′Kaα = 1

and (1− τ)β′K2
bβ + τβ′Kbβ = 1

• giving the generalised eigenvalue problem(
0 KaKb

KbKa 0

)(
α
β

)
= λ

(
(1− τ)K2

a + τKa 0
0 (1− τ)K2

b + τKb

)(
α
β

)
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Part 3

• Statistical analysis of the stability of patterns.

• Rademacher complexity.

• Generalisation of SVMs

• Support Vector Machine Optimisation
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Generalisation of a learner

• Assume that we have a learning algorithm A that
chooses a function AF(S) from a function space
F in response to the training set S.

• From a statistical point of view the quantity of
interest is the random variable:

ϵ(S,A,F) = E(x,y) [ℓ(AF(S),x, y)] ,

where ℓ is a ‘loss’ function that measures the
discrepancy between AF(S)(x) and y.
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Generalisation of a learner

• For example, in the case of classification ℓ is 1
if the two disagree and 0 otherwise, while for
regression it could be the square of the difference
between AF(S)(x) and y.

• We refer to the random variable ϵ(S,A,F) as the
generalisation of the learner.
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Example of Generalisation I

• We consider the Breast Cancer dataset from the
UCI repository.

• Use the simple Parzen window classifier described
in Part 2: weight vector is

w+ −w−

where w+ is the average of the positive training
examples and w− is average of negative training
examples. Threshold is set so hyperplane
bisects the line joining these two points.
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Example of Generalisation II
• Given a size m of the training set, by repeatedly

drawing random training sets S we estimate the
distribution of

ϵ(S,A,F) = E(x,y) [ℓ(AF(S),x, y)] ,

by using the test set error as a proxy for the true
generalisation.

• We plot the histogram and the average of the
distribution for various sizes of training set –
initially the whole dataset gives a single value if
we use training and test as the all the examples,
but then we plot for training set sizes:

342, 273, 205, 137, 68, 34, 27, 20, 14, 7.
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Example of Generalisation III

• Since the expected classifier is in all cases the
same:

E [AF(S)] = ES

[
w+

S −w−
S

]
= ES

[
w+

S

]
− ES

[
w−

S

]
= Ey=+1 [x]− Ey=−1 [x] ,

we do not expect large differences in the average
of the distribution, though the non-linearity of
the loss function means they won’t be the same
exactly.
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Error distribution: full dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

ISSML, June 2013 45



Error distribution: dataset size: 342
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Error distribution: dataset size: 273
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Error distribution: dataset size: 205
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Error distribution: dataset size: 137
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Error distribution: dataset size: 68
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Error distribution: dataset size: 34
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Error distribution: dataset size: 27
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Error distribution: dataset size: 20
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Error distribution: dataset size: 14
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Error distribution: dataset size: 7
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Observations

• Things can get bad if number of training
examples small compared to dimension (in this
case input dimension is 9)

• Mean can be bad predictor of true generalisation
i.e. things can look okay in expectation, but still
go badly wrong

• Key ingredient of learning keep flexibility high
while still ensuring good generalisation
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Controlling generalisation

• The critical method of controlling generalisation
for classification is to force a large margin on the
training data

• Equivalent to minimising the norm while keeping
the separation fixed (at say ±1)

• Support Vector Machines implement this strategy
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Controlling generalisation

• Now consider using an SVM on the same data
and compare the distribution of generalisations

• SVM distribution in red
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Error distribution: dataset size: 205
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Error distribution: dataset size: 137
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Error distribution: dataset size: 68
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Error distribution: dataset size: 20
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Error distribution: dataset size: 14
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Error distribution: dataset size: 7
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Expected versus confident bounds

• For a finite sample the generalisation ϵ(S,A,F)
has a distribution depending on the algorithm,
function class and sample size m.

• Traditional statistics as indicated above has
concentrated on the mean of this distribution –
but this quantity can be misleading, eg for low
fold cross-validation.
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Expected versus confident bounds
cont.

• Statistical learning theory has preferred to
analyse the tail of the distribution, finding a bound
which holds with high probability.

• This looks like a statistical test – significant at a
1% confidence means that the chances of the
conclusion not being true are less than 1% over
random samples of that size.

• This is also the source of the acronym PAC:
probably approximately correct, the ‘confidence’
parameter δ is the probability that we have been
misled by the training set.
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Concentration inequalities

• Statistical Learning is concerned with the
reliability or stability of inferences made from a
random sample.

• Random variables with this property have been
a subject of ongoing interest to probabilists and
statisticians.
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Concentration inequalities cont.

• As an example consider the mean of a sample of
m 1-dimensional random variables X1, . . . , Xm:

Sm =
1

m

m∑
i=1

Xi.

• Hoeffding’s inequality states that if Xi ∈ [ai, bi]

P{|Sm − E[Sm]| ≥ ϵ} ≤ 2 exp

(
− 2m2ϵ2∑m

i=1(bi − ai)2

)
Note how the probability falls off exponentially
with the distance from the mean and with the
number of variables.
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Concentration for SLT

• We are now going to look at deriving SLT results
from concentration inequalities.

• Perhaps the best known form is due to
McDiarmid (although he was actually representing
previously derived results):
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McDiarmid’s inequality
Theorem 1. Let X1, . . . , Xn be independent random
variables taking values in a set A, and assume that
f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f(x1, . . . , xn)− f(x1, . . . , x̂i, xi+1, . . . , xn)| ≤ ci,

for 1 ≤ i ≤ n. Then for all ϵ > 0,

P {f (X1, . . . , Xn)− Ef (X1, . . . , Xn) ≥ ϵ} ≤ exp

(
−2ϵ2∑n
i=1 c

2
i

)

• Hoeffding is a special case when f(x1, . . . , xn) =
Sn
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Using McDiarmid

• By setting the right hand side equal to δ, we can
always invert McDiarmid to get a high confidence
bound: with probability at least 1− δ

f (X1, . . . , Xn) < Ef (X1, . . . , Xn) +

√∑n
i=1 c

2
i

2
log

1

δ

• If ci = c/n for each i this reduces to

f (X1, . . . , Xn) < Ef (X1, . . . , Xn) +

√
c2

2n
log

1

δ
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Rademacher complexity

• Rademacher complexity is a new way of
measuring the complexity of a function class. It
arises naturally if we rerun the proof using the
double sample trick and symmetrisation but look
at what is actually needed to continue the proof:
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Rademacher proof beginnings
For a fixed f ∈ F we have

E [f(z)] ≤ Ê [f(z)] + sup
h∈F

(
E[h]− Ê[h]

)
.

where F is a class of functions mapping from Z to
[0, 1] and Ê denotes the sample average.

We must bound the size of the second term. First
apply McDiarmid’s inequality to obtain (ci = 1/m for
all i) with probability at least 1− δ:

sup
h∈F

(
E[h]− Ê[h]

)
≤ ES

[
sup
h∈F

(
E[h]− Ê[h]

)]
+

√
ln(1/δ)

2m
.
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Deriving double sample result

• We can now move to the ghost sample by simply
observing that E[h] = ES̃

[
Ê[h]

]
:

ES

[
sup
h∈F

(
E[h]− Ê[h]

)]
=

ES

[
sup
h∈F

ES̃

[
1

m

m∑
i=1

h(z̃i)−
1

m

m∑
i=1

h(zi)

∣∣∣∣∣S
]]
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Deriving double sample result cont.

Since the sup of an expectation is less than or
equal to the expectation of the sup (we can make
the choice to optimise for each S̃) we have

ES

[
sup
h∈F

(
E[h]− Ê[h]

)]
≤

ESES̃

[
sup
h∈F

1

m

m∑
i=1

(h(z̃i)− h(zi))

]
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Adding symmetrisation
Here symmetrisation is again just swapping
corresponding elements – but we can write this as
multiplication by a variable σi which takes values ±1
with equal probability:

ES

[
sup
h∈F

(
E[h]− Ê[h]

)]
≤

≤ EσSS̃

[
sup
h∈F

1

m

m∑
i=1

σi (h(z̃i)− h(zi))

]

≤ 2ESσ

[
sup
h∈F

1

m

m∑
i=1

σih(zi)

]
= Rm (F) ,

assuming F closed under negation f 7→ −f .
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Rademacher complexity

The Rademacher complexity provides a way of
measuring the complexity of a function class F by
testing how well on average it can align with random
noise:

Rm(F) = ESσ

[
sup
f∈F

2

m

m∑
i=1

σif (zi)

]
.

is known as the Rademacher complexity of the
function class F.
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Main Rademacher theorem

The main theorem of Rademacher complexity: with
probability at least 1 − δ over random samples S of
size m, every f ∈ F satisfies

E [f(z)] ≤ Ê [f(z)] +Rm(F) +

√
ln(1/δ)

2m

• Note that Rademacher complexity gives the
expected value of the maximal correlation with
random noise – a very natural measure of
capacity.

• Note that the Rademacher complexity is distribution
dependent since it involves an expectation over
the choice of sample – this might seem hard to
compute.
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Empirical Rademacher theorem

• Since the empirical Rademacher complexity

R̂m(F) = Eσ

[
sup
f∈F

2

m

m∑
i=1

σif (zi)

∣∣∣∣∣ z1, . . . , zm
]

is concentrated, we can make a further
application of McDiarmid to obtain with probability
at least 1− δ

ED [f(z)] ≤ Ê [f(z)] + R̂m(F) + 3

√
ln(2/δ)

2m
.
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Application to large margin
classification

• Rademacher complexity comes into its own for
Boosting and SVMs.
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Application to Boosting

• We can view Boosting as seeking a function from
the class (H is the set of weak learners){∑

h∈H

ahh(x) : ah ≥ 0,
∑
h∈H

ah ≤ B

}
= convB(H)

by minimising some function of the margin
distribution (assume H closed under negation).

• Adaboost corresponds to optimising an exponential
function of the margin over this set of functions.

• We will see how to include the margin in the
analysis later, but concentrate on computing the
Rademacher complexity for now.
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Rademacher complexity of convex
hulls

Rademacher complexity has a very nice property
for convex hull classes:

R̂m(convB(H)) =
2

m
Eσ

 sup
hj∈H,

∑
j aj≤B

m∑
i=1

σi

∑
j

ajhj(xi)


≤ 2

m
Eσ

 sup
hj∈H,

∑
j aj≤B

∑
j

aj

m∑
i=1

σihj(xi)


≤ 2

m
Eσ

[
sup
hj∈H

B

m∑
i=1

σihj(xi)

]
≤ BR̂m(H).
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Rademacher complexity of convex
hulls cont.

• Hence, we can move to the convex hull without
incurring any complexity penalty for B = 1!
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Rademacher complexity for SVMs

• The Rademacher complexity of a class of linear
functions with bounded 2-norm:{
x →

m∑
i=1

αiκ(xi,x):α
′Kα ≤ B2

}
⊆

⊆ {x → ⟨w, ϕ (x)⟩ : ∥w∥ ≤ B}
= FB,

where we assume a kernel defined feature
space with

⟨ϕ(x), ϕ(z)⟩ = κ(x, z).
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Rademacher complexity of FBThe following derivation gives the result

R̂m(FB) = Eσ

[
sup
f∈FB

∣∣∣∣∣ 2m
m∑
i=1

σif (xi)

∣∣∣∣∣
]

= Eσ

[
sup

∥w∥≤B

∣∣∣∣∣
⟨
w,

2

m

m∑
i=1

σiϕ (xi)

⟩∣∣∣∣∣
]

≤ 2B

m
Eσ

[∥∥∥∥∥
m∑
i=1

σiϕ(xi)

∥∥∥∥∥
]

=
2B

m
Eσ


⟨ m∑

i=1

σiϕ(xi),

m∑
j=1

σjϕ(xj)

⟩1/2


≤ 2B

m

Eσ

 m∑
i,j=1

σiσjκ(xi,xj)

1/2

=
2B

m

√√√√ m∑
i=1

κ(xi,xi)
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Support Vector Machines (SVM)

• SVM seeks linear function in a feature space
defined implicitly via a kernel κ:

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩

that optimises a bound on the generalisation.

• The first step is to introduce a loss function which
upper bounds the discrete loss

P (y ̸= sgn(g(x))) = E [H(−yg(x))],

where H is the Heaviside function.
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Margins in SVMs

• Critical to the bound will be the margin of the
classifier

γ(x, y) = yg(x) = y(⟨w, ϕ(x)⟩+ b) :

positive if correctly classified, and measures
distance from the separating hyperplane when
the weight vector is normalised.

• The margin of a linear function g is

γ(g) = min
i

γ(xi, yi)

though this is frequently increased to allow some
‘margin errors’.
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Margins in SVMs
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Applying the Rademacher theorem

• Consider the loss function A : R → [0, 1], given
by

A(a) =

 1, if a > 0;
1 + a/γ, if −γ ≤ a ≤ 0;
0, otherwise.

• By the Rademacher Theorem and since the loss
function A dominates H, we have that

E [H(−yg(x))] ≤ E [A(−yg(x))]

≤ Ê [A(−yg(x))] +

R̂m(A ◦ F) + 3

√
ln(2/δ)

2m
.
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Empirical loss and slack variables

• But the function A(−yig(xi)) ≤ ξi/γ, for i =
1, . . . ,m, and so

E [H(−yg(x))] ≤ 1

mγ

m∑
i=1

ξi + R̂m(A ◦ F) + 3

√
ln(2/δ)

2m
.

• The final missing ingredient to complete the
bound is to bound R̂m(A ◦ F) in terms of R̂m(F).

• This can be obtained in terms of the maximal
slope of the function A: R̂m(A ◦ F) ≤ 2

γR̂m(F).
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Final SVM bound

• Assembling the result we obtain:

P (y ̸= sgn(g(x))) = E [H(−yg(x))]

≤ 1

mγ

m∑
i=1

ξi +
4

mγ

√√√√ m∑
i=1

κ(xi,xi) + 3

√
ln(2/δ)

2m

• Note that for the Gaussian kernel this reduces to

P (y ̸= sgn(g(x))) ≤ 1

mγ

m∑
i=1

ξi +
4√
mγ

+ 3

√
ln(2/δ)

2m
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Using a kernel

• Can consider much higher dimensional spaces
using the kernel trick

• Can even work in infinite dimensional spaces, eg
using the Gaussian kernel:

κ(x, z) = exp

(
−∥x− z∥2

2σ2

)
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Error distribution: dataset size: 342
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Error distribution: dataset size: 273
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Applying to 1-norm SVMs
We take the following formulation of the 1-norm
SVM to optimise the bound:

minw,b,γ,ξ −γ + C
∑m

i=1 ξi
subject to yi (⟨w, ϕ (xi)⟩+ b) ≥ γ − ξi, ξi ≥ 0,

i = 1, . . . ,m, and ∥w∥2 = 1.
(2)

Note that
ξi = (γ − yig(xi))+ ,

where g(·) = ⟨w, ϕ(·)⟩+ b.
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Dual form of the SVM problem

Forming the Lagrangian L(w, b, γ, ξ, α, β, λ):

−γ + C

m∑
i=1

ξi −
m∑
i=1

αi [yi(⟨ϕ (xi) ,w⟩+ b)− γ + ξi]

−
m∑
i=1

βiξi + λ
(
∥w∥2 − 1

)
with αi ≥ 0 and βi ≥ 0.
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Dual form of the SVM problem

Taking derivatives gives:

∂L(w, b, γ, ξ, α, β, λ)

∂w
= 2λw −

m∑
i=1

yiαiϕ (xi) = 0,

∂L(w, b, γ, ξ, α, β, λ)

∂ξi
= C−αi−βi = 0,

∂L(w, b, γ, ξ, α, β, λ)

∂b
=

m∑
i=1

yiαi = 0,

∂L(w, b, γ, ξ, α, β, λ)

∂γ
= 1−

m∑
i=1

αi = 0.
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Dual form of the SVM problem

L(α, λ) = − 1

4λ

m∑
i,j=1

yiyjαiαjκ (xi,xj)− λ,

which, again optimising with respect to λ, gives

λ∗ =
1

2

 m∑
i,j=1

yiyjαiαjκ (xi,xj)

1/2
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Dual form of the SVM problem

equivalent to maximising

L(α) = −
m∑

i,j=1

αiαjyiyjκ (xi,xj) ,

subject to the constraints

0 ≤ αi ≤ C,

m∑
i=1

αi = 1

m∑
i=1

yiαi = 0

to give solution

α∗
i , i = 1, . . . ,m
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Dual form of the SVM problem
This is a convex quadratic programme: minimising
a convex quadratic objective subject to linear
constraints: convex if Hessian G is positive semi-
definite:

Gij = yiyjκ (xi,xj)

Matrix psd iff u′Gu ≥ 0 for all u:

u′Gu =

m∑
i,j=1

uiujyiyj⟨ϕ(xi), ϕ(xj)⟩

=

⟨
m∑
i=1

uiyiϕ(xi),

m∑
j=1

ujyjϕ(xj)

⟩

=

∥∥∥∥∥
m∑
i=1

uiyiϕ(xi)

∥∥∥∥∥
2

≥ 0
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Dual form of the SVM problem
Kuhn-Tucker conditions:

αi [yi(⟨ϕ (xi) ,w⟩+ b)− γ + ξi] = 0

βiξi = 0

These imply:

• αi ̸= 0 only if

yi(⟨ϕ (xi) ,w⟩+ b) = γ − ξi

these correspond to support vectors – their
margins are less than or equal to γ.

• ξi ̸= 0 only if βi = 0 implying that αi = C, i.e. for
0 < αi < C margin is exactly γ.
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Dual form of the SVM problem

The solution can then be computed as:

choose i, j such that −C < α∗
i yi < 0 < α∗

jyj < C

b∗ = −0.5

(
m∑

k=1

α∗
kykκ (xk,xi) +

m∑
k=1

α∗
kykκ (xk,xj)

)

f(·) = sgn

 m∑
j=1

α∗
jyjκ (xj, ·) + b∗

 ;
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Dual form of the SVM problem

We can compute the margin as follows:

λ∗ =
1

2

 m∑
i,j=1

yiyjα
∗
iα

∗
jκ (xi,xj)

1/2

γ∗ = (2λ∗)−1

(
m∑

k=1

α∗
kykκ (xk,xj) + b∗

)

Similarly we can compute

m∑
i=1

ξi =
−2λ∗ + γ∗

C

if we wish to compute the value of the bound.
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Dual form of the SVM problem

Decision boundary and γ margin for 1-norm svm
with a gaussian kernel:
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Dual form of the SVM problem

• Have introduced a slightly non-standard version
of the SVM but makes ν-SVM very simple to
define.

• Consider expressing C = 1/(νm):

– implies 0 ≤ αi ≤ 1/(νm)
– if ξ > 0 then αi = 1/(νm), but

∑m
i=1αi = 1 so

at most νm inputs can have this hold.
– equally at least νm inputs have αi ̸= 0

• Hence, ν can be seen as the fraction of ‘support
vectors’, a natural measure of the noise in the
data.
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Alternative form of the SVM problem

Note more traditional form of the dual SVM
optimisation:

L(α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjκ (xi,xj) .

with constraints

0 ≤ αi ≤ C,

m∑
i=1

yiαi = 0
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Alternative form of the SVM problem

• Arises from considering renormalising so that
output at margin is 1 and minimising the weight
vector.

• The values of the regularisation parameter C do
not correspond.

• Has advantage of simple kernel adatron algorithm
if we consider the case of fixing b = 0 which
removes the constraint

∑m
i=1αiyi = 0, so

can perform gradient descent on individual αi

independently.

• SMO algorithm performs the update on pairs of
αi, αj to ensure constraints remain satisfied.
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Part 4

• Novelty detection

• Boosting

• Multiple Kernel Learning: bounds and algorithms
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Novelty detection
We can also motivate novelty detection by a similar
analysis as that for SVM: consider a hypersphere
centred at c of radius r and the function g:

g (x) =


0, if ∥c− ϕ(x)∥ ≤ r;
(∥c− ϕ(x)∥2 − r2)/γ, if r2 ≤ ∥c− ϕ(x)∥2 ≤ r2 + γ;
1, otherwise.

with probability at least 1− δ

E[g(x)] ≤ Ê[g(x)] +
6R2

γ
√
m

+ 3

√
ln(2/δ)

2m

Note that tension is between creating a tight bound
and defining a small sphere.
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Novelty detection

Let
ξi = (∥c− ϕ(x)∥2 − r2)+

so that
Ê[g(x)] ≤ 1

γm
∥ξ∥1

Treating γ as fixed we minimise the bound by
minimising ∥ξ∥1 and r:

minc,r,ξ r2 + C ∥ξ∥1
subject to ∥ϕ(xi)− c∥2 ≤ r2 + ξi

ξi ≥ 0, i = 1, . . . ,m
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Novelty detection
Again introducing the Lagrangian L(c, r, α, ξ)

r2 + C

m∑
i=1

ξi +

m∑
i=1

αi

[
∥ϕ(xi)− c∥2 − r2 − ξi

]
−

m∑
i=1

βiξi.

Differentiating with respect to the primal variables
gives:

∂L(c, r, α, ξ)

∂c
= 2

m∑
i=1

αi(ϕ(xi)− c)= 0;

∂L(c, r, α, ξ)

∂r
= 2r

(
1−

m∑
i=1

αi

)
= 0;

∂L(c, r, α, ξ)

∂ξi
= C − αi − βi = 0.
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Novelty detection

The final equation implies that αi ≤ C. Substituting,
we obtain

L(c, r, α, ξ) = r2 + C
m∑
i=1

ξi

+

m∑
i=1

αi

[
∥ϕ(xi)− c∥2 − r2 − ξi

]
−

m∑
i=1

βiξi

=

m∑
i=1

αi ⟨ϕ(xi)− c, ϕ(xi)− c⟩

=

m∑
i=1

αiκ (xi,xi) −
m∑

i,j=1

αiαjκ (xi,xj) ,
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Novelty detection
Hence optimisation maximise

W (α) =

m∑
i=1

αiκ (xi,xi)−
m∑

i,j=1

αiαjκ (xi,xj)

subject to
∑m

i=1αi = 1 and 0 ≤ αi ≤ C,i = 1, . . . ,m.
with final novelty test being:

f(·) = H

[
κ (·, ·)− 2

m∑
i=1

α∗
iκ (xi, ·) +D

]

where

D =

m∑
i,j=1

α∗
iα

∗
jκ (xi,xj)− (r∗)

2 − γ
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Novelty detection
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Final Boosting bound
• Applying a similar strategy for Boosting with the

1-norm of the slack variables we arrive at Linear
programming boosting that minimises

∑
h

ah + C

m∑
i=1

ξi,

where ξi = (1− yi
∑

h ahh(xi))+.

• with corresponding bound:

P (y ̸= sgn(g(x))) = E [H(−yg(x))]

≤ 1

m

m∑
i=1

ξi + R̂(H)
∑
h

ah + 3

√
ln(2/δ)

2m
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Linear programming machine

• Controversy of why boosting works and relation
to bagging.

• The previous bound suggests an optimisation
similar to that of SVMs.

• seeks linear function in a feature space defined
explicitly.

• For example using the 1-norm it seeks w to solve

minw,b,ξ ∥w∥1 + C
∑m

i=1 ξi

subject to yi (⟨w,xi⟩+ b) ≥ 1− ξi, ξi ≥ 0,
i = 1, . . . ,m.
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Linear programming boosting

• Very slight generalisation considers the features
as a set Hij of ‘weak’ learners (and include
the constant function as one weak learner and
negative of each weak learner):

mina,ξ ∥a∥1 + C
∑m

i=1 ξi

subject to yiHia ≥ 1− ξi, ξi ≥ 0, ai ≥ 0
i = 1, . . . ,m.
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Alternative version

• Can explicitly optimise margin with 1-norm fixed:

maxρ,a,ξ ρ−D
∑m

i=1 ξi

subject to yiHia ≥ ρ− ξi, ξi ≥ 0,aj ≥ 0∑N
j=1 aj = 1.

• Dual has the following form:

minβ,u β

subject to
∑m

i=1 uiyiHij ≤ β, j = 1, . . . , N ,∑m
i=1 ui = 1, 0 ≤ ui ≤ D.

ISSML, June 2013 120



Column generation
Can solve the dual linear programme using an
iterative method:

1 initialise ui = 1/m, i = 1, . . . ,m, β = ∞, J = ∅
2 choose j⋆ that maximises f(j) =

∑m
i=1 uiyiHij

3 if f(j⋆) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j⋆}
5 Solve dual restricted to set J to give ui, β
6 Go to 2

• Note that ui is a distribution on the examples
• Each j added acts like an additional weak learner

• f(j) is simply the weighted classification
accuracy

• Hence gives ‘boosting’ algorithm - with previous
weights updated satisfying error bound

• Guaranteed convergence and soft stopping
criteria

ISSML, June 2013 121



Multiple kernel learning
• MKL puts a 1-norm constraint on a linear

combination of kernels:{
κ(x, z) =

N∑
t=1

ztκt(x, z) : zt ≥ 0,

N∑
t=1

zt = 1

}

and trains an SVM while optimizing zt – a convex
problem, c.f. group Lasso.

• obtain corresponding bound:

P (y ̸= sgn(g(x)))

≤ 1

mγ

m∑
i=1

ξi +
1

γ
R̂m

(
N∪
t=1

Ft

)
+ 3

√
ln(2/δ)

2m

ISSML, June 2013 122



Bounding MKL
• Need a bound on

R̂m

(
F =

N∪
t=1

Ft

)

where Ft = {x → ⟨w, ϕt (x)⟩ : ∥w∥ ≤ 1}.

• First note further applications of McDiarmid gives
with probability 1−δ0 of a random selection of σ∗:

R̂m(F) ≤ 2

m
sup
f∈F

m∑
i=1

σ∗
i f(xi) + 4

√
ln(1/δt)

2m

and
2

m
sup
f∈Ft

m∑
i=1

σ∗
i f(xi) ≤ R̂m(Ft) + 4

√
ln(1/δt)

2m

with probability 1− δt
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Bounding MKL

• Hence taking δt = δ/2(N + 1) for t = 0, . . . , N

R̂m

(
F =

N∪
t=1

Ft

)

≤ 2

m
sup
f∈F

m∑
i=1

σ∗
i f(xi) + 4

√
ln(2(N + 1)/δ)

2m

≤ 2

m
max

1≤t≤N
sup
f∈Ft

m∑
i=1

σ∗
i f(xi) + 4

√
ln(2(N + 1)/δ)

2m

≤ 2

m
max

1≤t≤N
R̂m(Ft) + 8

√
ln(2(N + 1)/δ)

2m

with probability 1− δ/2.
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Bounding MKL

• This gives an overall bound on the generalisation
of MKL of

P (y ̸= sgn(g(x))) ≤ 1

mγ

m∑
i=1

ξi +
2

γm
max

1≤t≤N
tr(Kt) +

8

√
ln(2(N + 1)/δ)

2m
+ 3

√
ln(4/δ)

2m

where Kt is the t-th kernel matrix.

• Bound gives only a logarithmic (additive)
dependence on the number of kernels.
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Linear Programming MKL
• Column generation gives efficient MKL if we can

pick the best weak learner in each Ft efficiently:

sup
f∈Ft

m∑
i=1

uiyif(xi) = sup
w:∥w∥≤1

m∑
i=1

uiyi ⟨w, ϕt(xi)⟩

= sup
w:∥w∥≤1

⟨
w,

m∑
i=1

uiyiϕt(xi)

⟩

=

∥∥∥∥∥
m∑
i=1

uiyiϕt(xi)

∥∥∥∥∥
=

√
u′YKtYu =: Nt

easily computable from the kernel matrices (note
that u is sparse after first iteration and can also
be chosen sparse at the start).
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Linear Programming MKL

• The optimal weak learner from Ft is realised by
the weight vector that achieves the supremum

w =

∑m
i=1 uiyiϕt(xi)

∥
∑m

i=1 uiyiϕt(xi)∥

which has dual representation:

αi =
1

Nt
uiyi

• Hence, can use the linear programming boosting
approach to implement multiple kernel learning.
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Part 5

• Kernel design strategies.

• Kernels for text and string kernels.

• Kernels for other structures.

• Kernels from generative models.
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Kernel functions
• Already seen some properties of kernels:

– symmetric:

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩ = ⟨ϕ(z), ϕ(x)⟩ = κ(z,x)

– kernel matrices psd:

u′Ku =

m∑
i,j=1

uiuj⟨ϕ(xi), ϕ(xj)⟩

=

⟨
m∑
i=1

uiϕ(xi),

m∑
j=1

ujϕ(xj)

⟩

=

∥∥∥∥∥
m∑
i=1

uiϕ(xi)

∥∥∥∥∥
2

≥ 0
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Kernel functions

• These two properties are all that is required for a
kernel function to be valid: symmetric and every
kernel matrix is psd.

• Note that this is equivalent to all eigenvalues non-
negative – recall that eigenvalues of the kernel
matrix measured the sum of the squares of the
projections onto the eigenvector.

• If we have uncountable domains should also
have continuity, though there are exceptions to
this as well.
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Kernel functions

Proof outline:

• Define feature space as class of functions:

F =

{
m∑
i=1

αiκ(xi, ·):m ∈ N,xi ∈ X,αi ∈ R, i = 1, . . . ,m

}

• Linear space

• embedding given by

x 7−→ κ(x, ·)
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Kernel functions

• inner product between

f(x) =

m∑
i=1

αiκ(xi,x) and g(x) =

n∑
i=1

βiκ(zi,x)

defined as

⟨f, g⟩ =
m∑
i=1

n∑
j=1

αiβjκ(xi, zj) =
m∑
i=1

αig(xi) =
n∑

j=1

βjf(zj),

• well-defined

• ⟨f, f⟩ ≥ 0 by psd property.
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Kernel functions

• so-called reproducing property:

⟨f, ϕ(x)⟩ = ⟨f, κ(x, ·)⟩ = f(x)

• implies that inner product corresponds to
function evaluation – learning a function corresponds
to learning a point being the weight vector
corresponding to that function:

⟨wf , ϕ(x)⟩ = f(x)
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Kernel constructions

For κ1, κ2 valid kernels, ϕ any feature map, B psd
matrix, a ≥ 0 and f any real valued function, the
following are valid kernels:

• κ(x, z) = κ1(x, z) + κ2(x, z),

• κ(x, z) = aκ1(x, z),

• κ(x, z) = κ1(x, z)κ2(x, z),

• κ(x, z) = f(x)f(z),

• κ(x, z) = κ1(ϕ(x),ϕ(z)),

• κ(x, z) = x′Bz.
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Kernel constructions
Following are also valid kernels:

• κ(x, z) =p(κ1(x, z)), for p any polynomial with
positive coefficients.

• κ(x, z) = exp(κ1(x, z)),

• κ(x, z) = exp(−∥x− z∥2 /(2σ2)).

Proof of third: normalise the second kernel:

exp(⟨x, z⟩ /σ2)√
exp(∥x∥2 /σ2) exp(∥z∥2 /σ2)

= exp

(
⟨x, z⟩
σ2

− ⟨x,x⟩
2σ2

− ⟨z, z⟩
2σ2

)

= exp

(
−∥x− z∥2

2σ2

)
.
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Subcomponents kernel
For the kernel ⟨x, z⟩s the features can be indexed by
sequences

i = (i1, . . . , in),

n∑
j=1

ij = s

where
ϕi(x) = xi1

1 x
i2
2 . . . xin

n

A similar kernel can be defined in which all subsets
of features occur:

ϕ : x 7→ (ϕA(x))A⊆{1,...,n}

where
ϕA(x) =

∏
i∈A

xi
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Subcomponents kernel

So we have

κ⊆(x,y) = ⟨ϕ(x), ϕ(y)⟩

=
∑

A⊆{1,...,n}

ϕA(x)ϕA(y)

=
∑

A⊆{1,...,n}

∏
i∈A

xiyi =
n∏

i=1

(1 + xiyi)

Can represent computation with a graph:
1


 x y
1 1

x y
2 2

x y
n n

1 1

Each path in the graph corresponds to a feature.
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Graph kernels

Can also represent polynomial kernel

κ(x,y) = (⟨x,y⟩+R)
d
= (x1y1 + x2y2 + · · ·+ xnyn +R)

d

with a graph:
R
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 1
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Graph kernels

The ANOVA kernel is represented by the graph:
1

x z1 1

0 0( , ) 1

x z1 1

1

1

0 1( , )

1 1( , ) 1

1

( , )0 2

,( )1 2

( , )2 2

x z2 2 x z2 2

1

x z1 1

( , )1 n( , )1 1n -

( , )2 1n - ( , )2 n

( , )d n- -1 1 ( , )d n-1

( , )d n-1 ( , )d n

( , )0 1n- ( , )0 n

1

x z
n n
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Graph kernels

Features are all the combinations of exactly d
distinct features, while computation is given by
recursion:

κm
0 (x, z) = 1, if m ≥ 0,

κm
s (x, z) = 0, if m < s,

κm
s (x, z) = (xmzm)κm−1

s−1 (x, z) + κm−1
s (x, z)

While the resulting kernel is given by

κn
d(x, z)

in the bottom right corner of the graph.
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Graph kernels

• Initialise DP(1) = 1;

• for each node compute

DP(i) =
∑
j→i

κ(uj→ui) (x, z)DP (j)

• result given at output node s: κ(x, z) = DP(s).
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Kernels for text

• The simplest representation for text is the kernel
given by the feature map known as the vector
space model

ϕ : d 7→ ϕ(d) = (tf(t1, d), tf(t2, d), . . . , tf(tN , d))′

where t1, t2, . . . , tN are the terms occurring in the
corpus and tf(t, d) measures the frequency of
term t in document d.

• Usually use the notation D for the document term
matrix (cf. X from previous notation).

ISSML, June 2013 142



Kernels for text

• Kernel matrix is given by

K = DD′

wrt kernel

κ(d1, d2) =

N∑
j=1

tf(tj, d1)tf(tj, d2)

• despite high-dimensionality kernel function can
be computed efficiently by using a linked list
representation.
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Semantics for text

• The standard representation does not take into
account the importance or relationship between
words.

• Main methods do this by introducing a ‘semantic’
mapping S:

κ̂(d1, d2) = ϕ(d1)
′SS′ϕ(d2)
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Semantics for text

• Simplest is diagonal matrix giving term weightings
(known as inverse document frequency – tfidf):

w(t) = ln
m

df(t)

• Hence kernel becomes:

κ(d1, d2) =

N∑
j=1

w(tj)
2tf(tj, d1)tf(tj, d2)
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Semantics for text

• In general would also like to include semantic
links between terms with off-diagonal elements,
eg stemming, query expansion, wordnet.

• More generally can use co-occurrence of words
in documents:

S = D′

so
(SS′)ij =

∑
d

tf(i, d)tf(j, d)
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Semantics for text

• Information retrieval technique known as latent
semantic indexing uses SVD decomposition:

D′ = UΣV′

so that
d 7→ U′

kϕ(d)

which is equivalent to peforming kernel PCA to
give latent semantic kernels:

κ̃(d1, d2) = ϕ(d1)
′UkU

′
kϕ(d2)
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String kernels

• Consider the feature map given by

ϕp
u(s) = |{(v1, v2) : s = v1uv2}|

for u ∈ Σp with associated kernel

κp(s, t) =
∑
u∈Σp

ϕp
u(s)ϕ

p
u(t)
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String kernels

• Consider the following two sequences:

s ="statistics"
t ="computation"

The two strings contain the following substrings
of length 3:

"sta", "tat", "ati", "tis",
"ist", "sti", "tic", "ics"
"com", "omp", "mpu", "put",
"uta", "tat", "ati", "tio", "ion"

and they have in common the substrings "tat"
and "ati", so their inner product would be
κ (s, t) = 2.
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Trie based p-spectrum kernels

• Computation organised into a trie with nodes
indexed by substrings – root node by empty
string ϵ.

• Create lists of substrings at root node:

Ls(ϵ) = {(s(i : i+ p− 1), 0) : i = 1, |s| − p+ 1}

Similarly for t.

• Recursively through the tree: if Ls(v) and Lt(v)
both not empty:
for each (u, i) ∈ L∗(v) add (u, i + 1) to list
L∗(vui+1)

• At depth p increment global variable kern
initialised to 0 by |Ls(v)||Lt(v)|.
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Gap weighted string kernels

• Can create kernels whose features are all
substrings of length p with the feature weighted
according to all occurrences of the substring as
a subsequence:

ϕ ca ct at ba bt cr ar br

cat λ2 λ3 λ2 0 0 0 0 0
car λ2 0 0 0 0 λ3 λ2 0
bat 0 0 λ2 λ2 λ3 0 0 0
bar 0 0 0 λ2 0 0 λ2 λ3

• This can be evaluated using a dynamic
programming computation over arrays indexed
by the two strings.
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Tree kernels

• We can consider a feature mapping for trees
defined by

ϕ : T 7−→ (ϕS(T ))S∈I

where I is a set of all subtrees and ϕS(T ) counts
the number of co-rooted subtrees isomorphic to
the tree S.

• The computation can again be performed
efficiently by working up from the leaves of the
tree integrating the results from the children at
each internal node.

• Similarly we can compute the inner product in the
feature space given by all subtrees of the given
tree not necessarily co-rooted.
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Probabilistic model kernels

• There are two types of kernels that can be
defined based on probabilistic models of the
data.

• The most natural is to consider a class of models
index by a model class M : we can then define
the similarity as

κ(x, z) =
∑
m∈M

P (x|m)P (z|m)PM(m)

also known as the marginalisation kernel.

• For the case of Hidden Markov Models this
can be again be computed by a dynamic
programming technique.
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Probabilistic model kernels

• Pair HMMs generate pairs of symbols and under
mild assumptions can also be shown to give rise
to kernels that can be efficiently evaluated.

• Similarly hidden tree generating models of data,
again using a recursion that works upwards from
the leaves.
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Fisher kernels
Fisher kernels are an alternative way of defining
kernels based on probabilistic models.

• We assume the model is parametrised according
to some parameters: consider the simple
example of a 1-dim Gaussian distribution
parametrised by µ and σ:

M =

{
P (x|θ) = 1√

2πσ
exp

(
−(x− µ)

2

2σ2

)
: θ = (µ, σ) ∈ R2

}
.

• The Fisher score vector is the derivative of the
log likelihood of an input x wrt the parameters:

logL(µ,σ) (x) = −(x− µ)
2

2σ2
− 1

2
log (2πσ) .
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Fisher kernels

• Hence the score vector is given by:

g
(
θ0, x

)
=

(
(x− µ0)

σ2
0

,
(x− µ0)

2

σ3
0

− 1

2σ0

)
.

• Taking µ0 = 0 and σ0 = 1 the feature embedding
is given by:
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Fisher kernels
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Fisher kernels

Can compute Fisher kernels for various models
including

• ones closely related to string kernels

• Hidden Markov Models
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Conclusions
Kernel methods provide a general purpose toolkit
for pattern analysis

• kernels define flexible interface to the data
enabling the user to encode prior knowledge into
a measure of similarity between two items – with
the proviso that it must satisfy the psd property.

• composition and subspace methods provide
tools to enhance the representation: normalisation,
centering, kernel PCA, kernel Gram-Schmidt,
kernel CCA, etc.

• algorithms well-founded in statistical learning
theory enable efficient and effective exploitation
of the high-dimensional representations to
enable good off-training performance.
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Where to find out more

Web Sites: www.support-vector.net (SV Machines)

www.kernel-methods.net (kernel methods)

www.kernel-machines.net (kernel Machines)

www.neurocolt.com (Neurocolt: lots of TRs)

www.pascal-network.org
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