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Summary

✤ After this tutorial, you will be able to

✤ [model evaluation] produce ROC plots for categorical and ranking 
classifiers and calculate their AUC; apply cross-validation in doing so; 

✤ [model selection] use the ROC convex hull method to select among 
categorical classifiers; determine the optimal decision threshold for a 
ranking classifier; 

✤ [metrics] analyse a variety of machine learning metrics by means of ROC 
isometrics; understand fundamental properties such as skew-sensitivity 
and equivalence between metrics; 

✤ [model construction] appreciate that one model can be many models from 
a ROC perspective; use ROC analysis to improve a model’s AUC; 

✤ [multi-class ROC] understand multi-class approximations such as the 
MAUC metric and calibration of multi-class probability estimators. 
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Take-home messages

It is almost always a good idea to distinguish performance between classes. 

ROC analysis is not just about ‘cost-sensitive learning’, but more generally 
about how to properly take account of operating conditions. 

Ranking is a more fundamental notion than classification. 

Different metrics say different things about performance, but can be 
translated into expected loss as a ‘common currency’. 
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Outline

✤ Part I: Fundamentals

✤ categorical classification: ROC plots, random selection between models, the ROC convex hull, 
iso-accuracy lines

✤ ranking: ROC curves, concavities, the AUC metric, turning rankers into classifiers, calibration, 
averaging

✤ alternatives: PN plots, precision-recall curves, cost curves

✤ Part II: A broader view

✤ understanding ML metrics: isometrics, basic types of linear isometric plots, linear metrics and 
equivalences between them, non-linear metrics, skew-sensitivity

✤ model manipulation: obtaining new models without re-training, ordering decision tree 
branches and rules, repairing concavities, locally adjusting rankings

✤ multi-class ROC: multi-objective optimisation and the Pareto front, calibrating multi-class 
probability estimators

✤ Part III: Comparing machine learning metrics

✤ Brier score, threshold selection methods, expected loss, ROL plots, rate-driven cost curve
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Part I: Fundamentals 

✤ Categorical classification: 

✤ ROC plots

✤ random selection between 
models

✤ the ROC convex hull

✤ iso-accuracy lines

✤ Ranking: 

✤ ROC curves

✤ the AUC metric

✤ turning rankers into classifiers

✤ calibration

✤ Alternatives: 

✤ PN plots

✤ precision-recall curves

✤ cost curves
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from http://wise.cgu.edu/sdt/

Receiver Operating Characteristic

✤ Originated from signal detection theory

✤ binary signal corrupted by Gaussian noise

✤ how to set the threshold (operating point) to distinguish between presence/
absence of signal? 

✤ depends on (1) strength of signal, (2) noise variance, and (3) desired hit rate or 
false alarm rate



✤ slope of ROC curve is equal to likelihood ratio

✤ for equal variances the Gaussian model gives 

✤ so LR(x) increases monotonically with x and ROC curve is convex

✤ optimal decision threshold is t such that 

✤ for uniform prior this gives t = x0 which means this threshold picks the 
point where the ROC curve intersects with the descending diagonal. 

✤ concavities occur with unequal variances
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Signal detection theory

LR(x) = P (x|signal)
P (x|noise)

LR(x) = exp

°
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LR(t ) = P (noise)
P (signal)



From score distributions to ROC curves
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From score distributions to ROC curves
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ROC analysis for fixed-threshold classifiers

✤ Based on contingency table or confusion matrix

✤ Terminology:

✤ true positive = hit

✤ true negative = correct rejection

✤ false positive = false alarm (aka Type I error)

✤ false negative = miss (aka Type II error)

✤ positive/negative refers to prediction

✤ true/false refers to correctness

Predicted © Predicted ™

Actual © # true positives # false negatives # positives

Actual ™ # false positives # true negatives # negatives

# positive predictions # negative predictions
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More terminology & notation

✤ True positive rate tpr = TP/Pos = TP/(TP+FN)

✤ fraction of positives correctly predicted

✤ False positive rate fpr = FP/Neg = FP/(FP+TN)

✤ fraction of negatives incorrectly predicted

✤ = 1 – true negative rate TN/(FP+TN)

✤ Accuracy 

✤ weighted average of true positive and true negative rates

Predicted © Predicted ™

Actual © TP FN Pos

Actual ™ FP TN Neg

PPos PNeg

acc = TP+TN

Pos+Neg

= TP

Pos

Pos

Pos+Neg

+ TN

Neg

Neg

Pos+Neg

= pos · tpr+neg · (1° fpr)
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A closer look at ROC space
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A closer look at ROC space
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A closer look at ROC space
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A worse than random 
classifier…

…can be made better than random
by inverting its predictions
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Example ROC plot 

ROC plot produced by ROCon (http://www.cs.bris.ac.uk/Research/
MachineLearning/rocon/)

http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/
http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/
http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/
http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/
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The ROC convex hull

Classifiers on the convex hull achieve the best accuracy for some class 
distributions. 
Classifiers below the convex hull are always sub-optimal
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Why is the convex hull a curve?

✤ Any performance on a line segment connecting two ROC points can be 
achieved by randomly choosing between them

✤ the ascending default performance diagonal is just a special case

✤ The classifiers on the ROC convex hull can be combined to form the ROCCH-
hybrid (Provost & Fawcett, 2001)

✤ ordered sequence of classifiers

✤ can be turned into a ranker 

✤ as with decision trees, see later
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Iso-accuracy lines

✤ Iso-accuracy line connects ROC points with the same accuracy

✤  

✤  

✤ Parallel ascending lines 
with slope neg/pos

✤ higher lines are better

✤ on descending diagonal, 
tpr = a

pos · tpr+neg · (1° fpr) = a

tpr = a °neg

pos

+ neg

pos

· fpr
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Iso-accuracy & convex hull

✤ Each line segment on the convex hull is an iso-accuracy line for a particular 
class distribution

✤ under that distribution, the two classifiers on the end-points achieve the 
same accuracy

✤ for distributions skewed towards negatives (steeper slope), the left one is 
better

✤ for distributions skewed towards positives (flatter slope), the right one is 
better

✤ Each classifier on convex hull is optimal for a specific range of class 
distributions
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Selecting the optimal classifier

For uniform class distribution, C4.5 is optimal and achieves about 82% accuracy.
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Selecting the optimal classifier

With four times as many +ves as –ves, SVM is optimal and achieves about 84% 
accuracy. 
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Selecting the optimal classifier

With four times as many –ves as +ves, CN2 is optimal and achieves about 86% 
accuracy
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Selecting the optimal classifier

With less than 9% positives, AlwaysNeg is optimal; 
with less than 11% negatives, AlwaysPos is optimal. 
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Incorporating costs and profits

✤ Iso-accuracy and iso-error lines are the same

✤ err = pos*(1–tpr) + neg*fpr

✤ slope of iso-error line is neg/pos

✤ Incorporating misclassification costs: 

✤ cost = pos*(1–tpr)*C(–|+) + neg*fpr*C(+|–)

✤ slope of iso-cost line is neg*C(+|–)/pos*C(–|+)

✤ Incorporating correct classification profits (negative costs): 

✤ cost = pos*(1–tpr)*C(–|+) + neg*fpr*C(+|–) + 
          pos*tpr*C(+|+) + neg*(1–fpr)*C(–|–)  

✤ slope of iso-yield line is 
          neg*[C(+|–)–C(–|–)]/pos*[C(–|+)–C(+|+)]
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Skew

✤ From a decision-making perspective, the cost matrix has one degree of 
freedom 

✤ need full cost matrix to determine absolute yield

✤ There is no reason to distinguish between cost skew and class skew

✤ skew ratio expresses relative importance of negatives vs. positives

✤ ROC analysis deals with skew-sensitivity rather than cost-sensitivity
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ROC analysis for scoring classifiers

✤ A scoring classifier outputs scores f(x,+) and f(x,–) for each class

✤ e.g. estimate class-conditional likelihoods P(x|+) and P(x|–)

✤ scores don’t need to be normalised

✤ f(x) = f(x,+)/f(x,–) can be used to rank instances from most to least likely 
positive

✤ e.g. likelihood ratio P(x|+)/P(x|–)

✤ Rankers can be turned into classifiers by setting a threshold on f(x)



Classification ≠ ranking ≠ probability estimation

✤ Better probabilities ≠ better ranking

✤ no ranking errors, mean squared error ≈ 0.25

✤ 1 ranking error (worse), mean squared error ≈ 0.13 (better)

✤ Better classification ≠ better ranking

✤ 4.5 ranking errors, 3 classification errors

✤ 6 ranking errors (worse), 2 classification errors (better)
25
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Labels obtained by majority vote decision rule. 
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Visualising ranking performance
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Each leaf is visualised by a line segment; by stacking these line segments in the 
ranking order we can keep track of cumulative performance (aka Lorenz curve or 
ROC curve). 



Visualising ranking performance (2)
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Counts on the axes mean that slopes represent posterior odds; normalising these 
by the number of positives/negatives means that slopes represent likelihood 
ratios instead. 



All possible tree labellings
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A tree with n leaves has 2n possible labellings, which summarise all possible 
model behaviours. Notice that a labelling and its opposite (e.g., +––+ and –++–) 
are each other’s mirror image in ROC space (through (1/2,1/2)). 



Choosing the optimal labelling
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The above labelling is optimal for uniform prior odds (i.e., positives and negatives 
are equally prevalent/important)



Choosing the optimal labelling (2)
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The second leaf is relabelled + if positives are three times as prevalent/important 
as negatives; notice that this effectively prunes the left subtree. 



(aside) Pruning considered harmful...
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However, notice that pruning decreases ranking performance, as measured by 
the area under the curve (AUC, see later). 



From a ranking to a ROC curve

start in (0,0)

get the next instance in the 
ranking 

if it is positive, move 
1/Pos up

if it is negative, move 
1/Neg right

36
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From a ranking to a ROC curve

start in (0,0)

get the next instance in the 
ranking 

if it is positive, move 
1/Pos up

if it is negative. move 
1/Neg right

make diagonal move in case 
of ties
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Naive Bayes ROC curve
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The concavity is caused by misleading marginal probabilities (cf. A=1, B=0). 
Repairing this would require access to the true joint probabilities. 



40

Some example ROC curves

Good separation between classes, convex curve
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Some example ROC curves

Reasonable separation, mostly convex
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Some example ROC curves

Fairly poor separation, mostly convex
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Some example ROC curves

Poor separation, large and small concavities
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Some example ROC curves

Random performance 
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A ROC curve tell a story

✤ The curve visualises the quality of the ranker or probabilistic model on a test 
set, without committing to a classification threshold

✤ The slope of the curve indicates class distribution in that segment of the 
ranking

✤ straight segment -> tied ranking or locally random behaviour

✤ Concavities indicate locally worse than random behaviour

✤ convex hull corresponds to discretising scores

✤ can potentially do better: repairing concavities
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 The AUC metric

✤ The Area Under ROC Curve (AUC) assesses the ranking in terms of separation 
of the classes

✤ all the +ves before the –ves: AUC=1

✤ random ordering: AUC=0.5

✤ all the –ves before the +ves: AUC=0

✤ Equivalent to the Mann-Whitney-Wilcoxon sum of ranks test

✤ estimates probability that randomly chosen +ve is ranked before randomly 
chosen –ve

✤                               where S– is the sum of ranks of –ves

✤ Gini coefficient = 2*AUC–1 (area between curve and diagonal)

✤ NB. not the same as Gini index!

S°°Pos(Pos°1)
Pos ·Neg
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AUC=0.5 not always random

Poor performance because data requires two classification boundaries
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 Turning rankers into classifiers 

✤ Requires decision rule, i.e. setting a threshold on the scores f(x)

✤ e.g. Bayesian: predict positive if 

✤ equivalently: 

✤ If scores are calibrated we can use the Bayesian threshold

✤ with uncalibrated scores we need to learn the threshold from the data

✤ NB. naïve Bayes is uncalibrated 

✤ i.e. don’t use prior, work directly with likelihood ratio

P (©|x)
P (™|x)

= P (x|©)
P (x|™)

P (©)
P (™)

> 1
P (x|©)
P (x|™)

> P (™)
P (©)
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Uncalibrated threshold
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Uncalibrated threshold

True and false positive rates achieved by default threshold
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Uncalibrated threshold

True and false positive rates achieved by default threshold
(NB. worse than majority class!)
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Calibrated threshold

Optimal achievable accuracy



Calibration

✤ Well-calibrated class probabilities have the following property: 

✤ conditioning a test sample on predicted probability p, the expected 
proportion of positives is close to p

✤ Thus, the predicted likelihood ratio approximates the slope of the ROC curve

✤ perfect calibration implies convex ROC curve

✤ This suggests a simple calibration procedure: 

✤ discretise scores using convex hull and derive probability in each bin from 
ROC slope

✤ = isotonic regression (Zadrozny & Elkan, ICML’01; Fawcett & 
Niculescu-Mizil, MLj’07; Flach & Matsubara, ECML’07)

✤ notice that this is exactly what decision trees do, so they are well-
calibrated on the training set

51



Isotonic calibration = pool adjacent violators
Original scores

Calibration map

Calibrated scores
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Piecewise constant calibration map leads to more ties in the ranking. 
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Logistic regression optimises this directly. 

Calibration map: logistic function
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1-D example

Blue: logistically calibrated mean-of-means
Green: isotonically calibrated mean-of-means
Red: logistic regression
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2-D example

Left: isotonically calibrated difference-between-means classifier
Right: logistically calibrated difference-between-means classifier

55
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Averaging ROC curves

✤ To obtain a cross-validated ROC curve

✤ just combine all test folds with scores for each instance, and draw a single 
ROC curve

✤ To obtain cross-validated AUC estimate with error bounds

✤ calculate AUC in each test fold and average

✤ or calculate AUC from single cv-ed curve and use bootstrap resampling for 
error bounds

✤ To obtain ROC curve with error bars

✤ vertical averaging (sample at fixed fpr points)

✤ threshold averaging (sample at fixed thresholds)

✤ see (Fawcett, 2004)



(a) ROC curves from five test samples (b) ROC curve from combining the samples

(c) Vertical averaging, fixing fpr (d) Threshold averaging 57

Averaging ROC curves

From (Fawcett, 2004)
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PN spaces 

✤ PN spaces are ROC spaces with non-normalised axes

✤ x-axis: covered –ves n (instead of fpr = n/Neg)

✤ y-axis: covered +ves p (instead of tpr = p/Pos)



Posterior odds or likelihood ratio?

✤ In PN plots slopes are posterior odds and the aspect ratio is the prior odds. 

✤ useful for visualising performance on single data set

✤ In ROC plots slopes are likelihood ratios; the prior odds is not visible unless 
you draw accuracy isometrics. 

✤ useful if class distribution is not fixed

✤ One way of obtaining likelihood ratios is by rebalancing the classes: 

✤ posterior odds po = lr * π/(1–π)

✤ likelihood ratio lr = po * (1–π)/π

59



Posterior odds or likelihood ratio (2)
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Precision-recall curves

✤ Precision prec = TP/PPos = TP/TP+FP

✤ fraction of positive predictions correct

✤ Recall rec = tpr = TP/Pos = TP/TP+FN

✤ fraction of positives correctly predicted

✤ Note: neither depends on true negatives

✤ makes sense in information retrieval, where true negatives tend to 
dominate —> low fpr easy

✤ F-measure is harmonic mean of precision and recall

✤ Quiz question: why harmonic mean?

Predicted © Predicted ™

Actual © TP FN Pos

Actual ™ FP TN Neg

PPos PNeg
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From (Fawcett, 2004)

PR curves vs. ROC curves

NB. Linear interpolation in ROC space → non-linear interpolation in PR space

→ Recall

→
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ROC curve vs. cost curve
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Part I: concluding remarks

✤ ROC analysis is useful for evaluating performance of classifiers and rankers

✤ key idea: separate performance on classes

✤ ROC curves contain a wealth of information for understanding and improving 
performance of classifiers

✤ requires visual inspection



Quiz!

✤ Four models: 

✤ decision tree

✤ k-nearest neighbour

✤ linear classifier

✤ naive Bayes

✤ trained on 2,000 examples 
and evaluated on

✤ 18,000 test examples

✤ 3,600 of those (20%)

✤ 720 of those (4%)
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Part II: A broader view

✤ Understanding ML metrics: 

✤ isometrics, basic types of 
linear isometric plots

✤ linear metrics and 
equivalences between them

✤ skew-sensitivity

✤ non-linear metrics

✤ Model manipulation: 

✤ repairing concavities by locally 
adjusting rankings

✤ Multi-class ROC: 

✤ multi-objective optimisation, 
Pareto front, convex hull

✤ multi-class AUC, multi-class 
calibration
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Understanding ML metrics

✤ We are referring here to metrics (or heuristics) that are used to rank (fpr,tpr) 
points

✤ i.e., classifiers or parts of classifiers

✤ NB. different sense of ranking than before! 

✤ Metrics are equivalent if their rankings are the same

✤ absolute value of metric not important

✤ This can be visualised very clearly by means of ROC isometrics

✤ additional benefit of studying skew-sensitivity

✤ see (Flach, 2003) and (Fürnkranz & Flach, 2003)
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Iso-accuracy lines revisited

In 2D ROC space
c = 1,  c = 1/2

In 3D ROC space
acc = 0.5, acc = 0.8
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Isometrics and skew ratio

✤ Accuracy is weighted average of true positive/negative rates:

✤ Skew ratio indicates relative importance of negatives over positives

✤ without costs: c = neg/pos

✤ Isometric plots show contour lines in 2D ROC space for a given metric with 
skew ratio as parameter

acc = pos · tpr+neg · (1° fpr) = tpr+ c · (1° fpr)
c +1
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Skew-sensitivity

✤ Strongly skew-insensitive metric is independent of skew ratio

✤ isometric surfaces in 3D ROC space are vertical

✤ can be obtained for any metric by fixing c

✤ Weakly skew-insensitive metric has the same isometric landscape for different 
values of c

✤ any collection of ROC points is ranked the same way, regardless of c

✤ Line of skew-indifference: points where the metric is independent of c

✤ for accuracy, this is the line tpr+fpr–1=0
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Types of isometric plots

✤ Parallel linear isometrics

✤ accuracy, weighted relative accuracy (WRAcc)

✤ Rotating linear isometrics

✤ precision, lift, F-measure

✤ Non-linear isometrics

✤ decision tree splitting criteria
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Symmetries

✤ Inverting predictions of classifier

✤ ROC space: point-mirroring through (0.5, 0.5)

✤ contingency table: swapping columns

✤ Inverting test labels

✤ ROC space: mirroring along ascending diagonal

✤ contingency table: swapping rows

✤ affects skew ratio (c becomes 1/c), so a test for skew-insensitivity

✤ Inverting both predictions and test labels

✤ ROC space: mirroring along descending diagonal

✤ contingency table: swapping rows and columns
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Precision or confidence

✤ Precision is defined as

✤ Weakly skew-insensitive, rotating isometrics

✤ on tpr = fpr diagonal, prec = pos

✤ singular point for tpr = fpr = 0

✤ Two variants with fixed value on diagonal

✤ relative precision: prec–pos

✤ lift: prec/pos

prec = pos · tpr

pos · tpr+neg · fpr

= tpr

tpr+ c · fpr
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Precision isometrics

c = 1,  
c = 1/2
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F-measure

✤ F-measure is harmonic average of precision and recall (true positive rate)

✤ alternatively, F-measure = precision (recall) with FP (FN) replaced 
with (FP+FN)/2

✤ In ROC notation: 

✤ Rank-equivalent but simpler:

✤ fpr=0 is line of skew-indifference

✤ Singular point for tpr = 0, fpr = –1/c 

F = 2tpr
1+ tpr+ c · fpr

G = tpr
1+ c · fpr
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F-measure isometrics

c = 1,  
c = 5
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F-measure isometrics

c = 1,  
c = 5
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Generalised linear isometrics

✤ Laplace correction and m-estimate are other examples which translate the 
rotation point

✤ General form: 

✤ m=0: precision

✤ m→∞: parallel isometrics with slope

✤ e.g. accuracy: a=1/2 

–m/c –m(1–a)/c 

–m 

–ma 

tpr+ma
tpr+ c · fpr+m

ac
1°a
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Linear metrics: summary

Metric Formula Skew-insensitive

version

Isometric

slope

Accuracy

    

€ 

tpr + c(1− fpr)
c + 1     

€ 

(tpr + 1− fpr)
2

c

WRAcc*

    

€ 

4c
(c + 1)

2
(tpr − fpr)   

€ 

tpr − fpr 1

Precision*

  

€ 

tpr
tpr + c ⋅ fpr   

€ 

tpr
tpr + fpr

Lift*

    

€ 

c + 1

2

tpr
tpr + c ⋅ fpr   

€ 

tpr
tpr + fpr

Relative

precision*
    

€ 

2c
c + 1

(tpr − fpr)
tpr + c ⋅ fpr   

€ 

tpr − fpr
tpr + fpr

  

€ 

tpr
fpr

F-measure

    

€ 

2tpr
tpr + c ⋅ fpr + 1     

€ 

2tpr
tpr + fpr + 1

G-measure

    

€ 

tpr
c ⋅ fpr + 1     

€ 

tpr
fpr + 1

    

€ 

tpr
fpr + 1/c

All metrics are re-scaled such that the strongly skew-insensitive 
version is in [0,1] or [–1,1]. An asterisk (*) denotes weak skew-insensitivity. 

€ 

}

€ 

}
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Splitting criteria

✤ Splitting criteria are invariant under swapping columns, i.e. point-mirroring 
through (0.5,0.5)

✤ if skew-insensitive then isometrics are symmetric across both diagonals

✤ They compare impurity of the parent with weighted average impurity of the 
children:

Left child Right child

Actual © TP FN Pos

Actual ™ FP TN Neg

Left Right N

Imp
µ
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,
Neg

N

∂
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∂
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ROC space for splitting criteria
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Impurity functions
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134 5. Tree models

0 0.5 1

0.5

Imp(ṗ)

ṗ
0

0.48

Gini index

ṗṗ
1

ṗ
2

Figure 5.2. (left) Impurity functions plotted against the empirical probability of the positive

class. From the bottom: the relative size of the minority class, min(ṗ,1 ° ṗ); the Gini index,

2ṗ(1° ṗ); entropy, °ṗ log2 ṗ ° (1° ṗ) log2(1° ṗ) (divided by 2 so that it reaches its maximum in

the same point as the others); and the (rescaled) square root of the Gini index,
p

ṗ(1° ṗ) – notice

that this last function describes a semi-circle. (right) Geometric construction to determine the

impurity of a split (Teeth= [many, few] from Example 5.1): ṗ is the empirical probability of the

parent, and ṗ1 and ṗ2 are the empirical probabilities of the children.

for ṗ = 1/2. The following functions all fit the bill.

Minority class min(ṗ,1° ṗ) – this is sometimes referred to as the error rate, as it mea-

sures the proportion of misclassified examples if the leaf was labelled with the

majority class; the purer the set of examples, the fewer errors this will make. This

impurity measure can equivalently be written as 1/2° |ṗ °1/2|.

Gini index 2ṗ(1° ṗ) – this is the expected error if we label examples in the leaf ran-

domly: positive with probability ṗ and negative with probability 1° ṗ. The prob-

ability of a false positive is then ṗ(1° ṗ) and the probability of a false negative

(1° ṗ)ṗ. 3

entropy °ṗ log2 ṗ ° (1° ṗ) log2(1° ṗ) – this is the expected information, in bits, con-

veyed by somebody telling you the class of a randomly drawn example; the purer

the set of examples, the more predictable this message becomes and the smaller

the expected information.

A plot of these three impurity measures can be seen in Figure 5.2 (left), some of

them rescaled so that they all reach their maximum at (0.5,0.5). I have added a fourth

one: the square root of the Gini index, which I will indicate as
p

Gini, and which has an

advantage over the others, as we will see later. Indicating the impurity of a single leaf

D j as Imp(D j ), the impurity of a set of mutually exclusive leaves {D1, . . . ,Dl } is then

3When I looked up ‘Gini index’ on Wikipedia I was referred to a page describing the Gini coefficient, which

– in a machine learning context – is a linear rescaling of the AUC to the interval [°1,1]. This is quite a different

concept, and the only thing that the Gini index and the Gini coefficient have in common is that they were

both proposed by the Italian statistician Corrado Gini, so it is good to be aware of potential confusion.



✤ relative impurity is defined as weighted impurity of (left) child in proportion to 
impurity of parent  

86

All impurity functions are re-scaled to [0,1]. DKM refers to (Dietterich, Kearns 
& Mansour, 1996). The skew-insensitivity of DKM-split for binary splits was shown 
by (Drummond & Holte, 2000). 

Impurity functions (2)

Impurity Imp(p,n) Relative impurity

Entropy     

€ 

−plog p − nlog n

Gini index     

€ 

4pn
    

€ 

(1+ c) ⋅ tpr ⋅ fpr
tpr + c ⋅ fpr

DKM
    

€ 

2 pn   

€ 

tpr ⋅ fpr
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Information gain isometrics

c = 1,  
c = 1/10
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Gini-split isometrics

c = 1,  
c = 1/10
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Comments on Gini-split

✤ More skew-sensitive than information gain

✤ Equivalent to two-by-two χ2 normalised by sample size (i.e., φ2)

✤ Strongly skew-insensitive version obtained by setting c=1:

✤ complement of the harmonic mean of true and false positive rates

GiniROC = 1° 2tpr · fpr

tpr+ fpr
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DKM-split isometrics

c = 1,  
c = 1/10
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Skew-insensitive splitting

✤ The best splits do well on both classes, even with highly unbalanced data 
sets

✤ so the trees optimise macro-averaged accuracy

✤ rather than micro-averaged accuracy

✤ Inflating a class does not change split quality

✤ bar rounding errors and tie-breaking

✤ Skew-sensitivity comes into play when pruning a decision tree

pos · tpr+neg · (1° fpr)

(tpr+1° fpr)/2



Tree learning: Peter’s favourite recipe

92

5.2 Ranking and probability estimation trees 147

and Gini index ‘mountains’ have rotated clockwise (Gini index more so than entropy),

while the
p

Gini mountain hasn’t moved at all.

The upshot of all this is that if you learn a decision tree or probability estimation

tree using entropy or Gini index as impurity measure – which is what virtually all avail-

able tree learning packages do – then your model will change if you change the class

distribution by oversampling, while if you use
p

Gini you will learn the same tree each

time. More generally, entropy and Gini index are sensitive to fluctuations in the class dis-

tribution,
p

Gini isn’t. So which one should you choose? My recommendation echoes

the ones I gave for majority class labelling and pruning: use a distribution-insensitive

impurity measure such as
p

Gini unless the training set operating conditions are rep-

resentative.5

Let’s wrap up the discussion on tree models so far. How would you train a decision

tree on a given data set, you might ask me? Here’s a list of the steps I would take:

1. First and foremost, I would concentrate on getting good ranking behaviour, be-

cause from a good ranker I can get good classification and probability estima-

tion, but not necessarily the other way round.

2. I would therefore try to use an impurity measure that is distribution-insensitive,

such as
p

Gini; if that isn’t available and I can’t hack the code, I would resort to

oversampling the minority class to achieve a balanced class distribution.

3. I would disable pruning and smooth the probability estimates by means of the

Laplace correction (or the m-estimate).

4. Once I know the deployment operation conditions, I would use these to select

the best operating point on the ROC curve (i.e., a threshold on the predicted

probabilities, or a labelling of the tree).

5. (optional) Finally, I would prune away any subtree whose leaves all have the

same label.

Even though in our discussion we have mostly concentrated on binary classification

tasks, it should be noted that decision trees can effortlessly deal with more than two

classes – as, indeed, can any grouping model. As already mentioned, multi-class im-

purity measures simply sum up impurities for each class in a one-versus-rest manner.

The only step in this list that isn’t entirely obvious when there are more than two classes

is step 4: in this case I would learn a weight for each class as briefly explained in Section

3.1, or possibly combine it with step 5 and resort to reduced-error pruning (Algorithm

5.3) which might be already implemented in the package you’re using.

5It should be noted that it is fairly easy to make measures such as entropy and Gini index distribution-

insensitive as well: essentially, this would involve compensating for an observed class ratio clr 6= 1 by dividing

all counts of positives, or positive empirical probabilities, by clr.
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ROC-based model manipulation

✤ ROC analysis allows creation of model variants without re-training

✤ (Part I) manipulating ranker thresholds

✤ (Part I) Re-labelling decision trees (Ferri et al., 2002)

✤ Example: Repairing concavities in ROC curves (Flach & Wu, 2003)
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"The article of Repairing Concavities in ROC Curves that 

will help you to perform all the main maintenance and 

repair work correctly and efficiently."

http://veganpr0n.com/repairing-concavities-in-roc-curves/ 
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Locally adjusted rankings

✤ Concavities in ROC curves from rankers indicate worse-than-random 
segments in the ranking

✤ Idea 1: use binned ranking (aka discretised scores) → convex hull

✤ Idea 2: invert ranking in segment

✤ Need to avoid overfitting → validation set



Example: XOR

0 1

0

1

95



Example: XOR

0 1

0

1

95



Example: XOR

0 1

0

1

95



above decision boundary?

use ranking 

in 2nd segment

yes no

use ranking 

in 1st segment

Example: XOR

0 1

0

1

95



above decision boundary?

use ranking 

in 2nd segment

yes no

use ranking 

in 1st segment

Example: XOR

0 1

0

1

tied  XXX

95



above decision boundary?

use ranking 

in 2nd segment

yes no

use ranking 

in 1st segment

Example: XOR

0 1

0

1

tied  XXXinvert  XXXX

95



Algorithm RepairSection

✤ Given a scoring model M and two thresholds T1>T2, construct a scoring 
model M' predicting scores as follows: 

✤ Let S(x) be the score predicted by M for instance x: 

✤ If X>T1, then predict S(x); 

✤ If X<T2, then predict S(x); 

✤ Otherwise, predict T1+T2–S(x). 
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Experimental design

10-fold cross-validation: use 8 folds for training, 1 fold for validation and 1 fold for 
testing
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Example



Example



Summary of experimental results

✤ We get small but significant improvements in AUC using decision trees and 
naive Bayes as base learners (in about half of the data sets)

✤ What didn’t work well: 

✤ Not using a validation set

✤ Repairing all concavities, not just the largest one

✤ Using two validation folds with decision trees
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More than two classes

✤ Two-class ROC analysis is a special case of multi-objective optimisation

✤ don’t commit to trade-off between objectives

✤ Pareto front is the set of points for which no other point improves all 
objectives

✤ points not on the Pareto front are dominated

✤ assumes monotonic trade-off between objectives

✤ Convex hull is subset of Pareto front

✤ assumes linear trade-off between objectives

✤ e.g. accuracy, but not precision
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How many dimensions?

✤ Depends on the cost model

✤ 1-vs-rest: fixed misclassification cost C(¬c|c) for each class c∈C 
→ |C| dimensions

✤ ROC space spanned by either tpr for each class or fpr for each class

✤ 1-vs-1: different misclassification costs C(ci|cj) for each pair of classes 
ci≠cj —> |C|(|C|–1) dimensions

✤ ROC space spanned by fpr for each (ordered) pair of classes

✤ Results about convex hull, optimal point given linear cost function etc. 
generalise

✤ (Srinivasan, 1999)
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Multi-class AUC

✤ In the most general case, we want to calculate Volume Under ROC Surface 
(VUS)

✤ See (Mossman, 1999) for VUS in the 1-vs-rest three-class case

✤ Can be approximated by projecting down to set of two-dimensional curves 
and averaging

✤ MAUC (Hand & Till, 2001): 1-vs-1, unweighted average

✤ (Provost & Domingos, 2001): 1-vs-rest, AUC for class c weighted by P(c)
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Multi-class calibration

✤ How to manipulate scores f(x,c) in order to obtain different ROC points?

✤ depends on the cost model

✤ How to search these ROC points to find optimum?

✤ exhaustive search probably infeasible, so needs to be approximated
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A simple 1-vs-rest approach

✤ From thresholds to weights:

✤ predict argmaxc wc f(x,c) 

✤ NB. two-class thresholds are a special case: 

✤ w+ f(x,+) > w– f(x,–) ⇔ f(x,+)/f(x,–) > w–/w+

✤ Setting the weights (Lachiche & Flach, 2003)

✤ Assume an ordering on classes and set the weights in a greedy fashion 

✤ Set w1 = 1

✤ For classes c=2 to n

✤ look for the best weight wc according to the weights fixed so far 
for classes c'<c, using the two-class algorithm
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Example: 3 classes

(0,0,1) 

(1,0,0) 

(0,1,0) 

3 

1 2 
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Discussion

✤ Strong experimental results

✤ 13 significant wins (95%), 22 draws, 2 losses on UCI data

✤ Sensitive to the ordering of classes

✤ largest classes first is best

✤ No guarantee to find a global (or even a local) optimum

✤ lots of scope for improvement, e.g. stochastic search
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Part II: concluding remarks

✤ Isometric plots visualise the behaviour of machine learning metrics

✤ equivalences, skew-sensitivity, skew-insensitive versions

✤ One model can be many models

✤ ROC analysis can be used to obtain alternative labellings of trees, adjust 
rankings, etc.

✤ Multi-class ROC
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Part III: Comparing machine learning metrics 

✤ This is based on recent work with Jose Hernandez-Orallo and Cesar Ferri.

✤ The main question is: what do metrics such as AUC — which do not directly 
measure classification performance — tell us about classification? 



Quiz: Decision tresholds

✤ Suppose you train a two-class naive Bayes model on a training set with balanced 
classes

✤ the model uses the default decision threshold (0.5 on estimated posterior 
probabilities) and achieves a certain performance, measured as accuracy, 
MAE, Brier score and AUC. 

✤ You are now given a new data set; it is unlabelled, but you are told the proportion 
of positives π ≠ 0.5. You are asked to classify this data set with your naive Bayes 
model. Which threshold do you use? 

1. the threshold is kept at 0.5. 

2. the threshold is set uniformly randomly. 

3. the threshold is set to 1–π. 

✤ What would the expected 0/1 loss be in each case, assuming a uniform 
distribution over π?  
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Score-driven threshold selection in cost space
Brier Curves: A New Cost-Based Visualisation of Classifier Performance
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Figure 2. The top curve is the Brier curve of the classifier from
Example 1, depicting the loss if the decision threshold is set equal
to the cost proportion c. The two discontinuous curves below are
BC0 and BC1, respectively. The cost curve is shown as a thick
dashed line. We can see that the probabilistic threshold choice
method is suboptimal between c = 0.15 and c = 0.90.

As a more realistic example, Figure 3 shows the Brier
curves of a J48 model trained in Weka (Witten & Frank,
2005) on the credit rating dataset from the UCI repository
(Frank & Asuncion, 2010) with a 50%-50% train-test split.
The classifier on the top plots is J48 with default parameters
(pruning enabled, Laplace correction disabled), while the
bottom classifier is J48 without pruning but with Laplace
smoothing. We can clearly see the overfitting of the un-
pruned tree, as it shows considerable difference between
the (good) training set curve and the (bad) test set curve.
We can also see the effect of the Laplace correction, which
deliberately sacrifices training set performance on extreme
cost proportions in the hope of better generalisation perfor-
mance. On the test set, we see that estimated probabilities
are well-calibrated for high cost proportions but not for low
ones.

4. The Area under the Brier Curve is the
Brier Score

Since the Brier curve plots loss against operating condition,
the area under it is expected loss, averaged over the whole
operating range. Let us concentrate first on cost proportion
as operating condition. The expected loss is defined as

Lc ,
Z 1

0
BCc(c)dc =

Z 1

0
Qc(c;c)dc

=
Z 1

0
2{cp0(1�F0(c))+(1� c)p1F1(c)}dc (12)

We then have the following result.
Theorem 1. The area under the Brier curve for cost pro-
portions is equal to the Brier score.

Proof. We have BS = p0BS0+p1BS1. Using integration by
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Figure 3. Brier curves and cost curves for two different J48 clas-
sifiers evaluated on training and test sets both sampled from the
credit rating UCI dataset. Top left: Pruned tree on training set
(AUC: 0.937, AUCH: 0.937, BS: 0.068). Top right: Pruned tree
on test set (AUC: 0.887, AUCH: 0.894, BS: 0.126). Bottom left:
Unpruned tree on training set (AUC: 0.985, AUCH: 0.988, BS:
0.042). Bottom right: Unpruned tree on test set (AUC: 0.893,
AUCH: 0.904, BS: 0.126).

parts, we have

BS0 =
Z 1

0
s2 f0(s)ds =

⇥
s2F0(s)

⇤1
s=0 �

Z 1

0
2sF0(s)ds

= 1�
Z 1

0
2sF0(s)ds =

Z 1

0
2sds�

Z 1

0
2sF0(s)ds

Similarly for the negative class:

BS1 =
Z 1

0
(1� s)2 f1(s)ds

=
⇥
(1� s)2F1(s)

⇤1
s=0 +

Z 1

0
2(1� s)F1(s)ds

=
Z 1

0
2(1� s)F1(s)ds

Taking their weighted average, we obtain

BS = p0BS0 +p1BS1

=
Z 1

0
{p0(2s�2sF0(s))+p12(1� s)F1(s)}ds

which, after reordering of terms and change of variable, is
the same expression as Eq. (12).

The proof for the empirical case, where the cumulative dis-
tribution functions F0 and F1 are piecewise constant and
discontinuous, is similar but more involved notationally.

✤ Training set (left), test set 
(right); pruned tree (top), 
unpruned tree (bottom)

✤ Depending on the 
operating condition (x-
axis) we choose a 
different operating point 
and hence a different 
cost line. 

✤ These curves are called 
Brier curves as their area 
is the Brier score.



Brier score decomposition

✤ The Brier score is the mean squared deviation from the ideal (rather than true) 
probabilities: 

✤ Over the segments in the ROC curve, this can be decomposed into 
calibration loss and refinement loss:
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Brier score example
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Brier score = (4*.22 + 2*.62 + .832 + 3*.252 + .82 + 3*.42 + 5*.172 + .752)/10 = 0.358.
Zero calibration loss as all predicted probabilities equal empirical probabilities.
Refinement loss = (5*.8*.2 + 4*.4*.6 + 5*.17*.83 + 6*.75*.25)/10 = 0.358. 



Refinement loss quantifies tied ranking
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Refinement vs. calibration plot
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Refinement vs. calibration plot
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Refinement vs. calibration plot
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Connecting AUC to expected loss

✤ We saw that setting the decision threshold to 1–π for proportion of positives π allows 
us to connect the expected 0/1 loss over uniform π to the Brier score. Can we do 
something similar for AUC?

✤ David Hand (MLj 2009) established a connection that however depended on the 
score distribution of the model. He concluded that AUC cannot measure classification 
performance in a coherent way, and proposed the H-measure as an alternative. 

✤ In response, 

✤ Flach, Hernandez-Orallo and Ferri (ICML 2011) showed that AUC could be 
connected to expected loss if non-optimal thresholds were taken into account. 
They also showed that the H-measure is a variant on the area under the optimal 
(lower-envelope) cost curve. 

✤ Hernandez-Orallo, Flach and Ferri (JMLR 2012) gave an alternative connection 
between AUC and 0/1-loss. They also showed that for optimal thresholds the 
expected loss is not related to the area under the ROC curve but rather to its 
shape through the refinement loss. 
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acc=1/2

rate=1/2

rate = π*tpr+(1–π)*fpr

acc = π*tpr+(1–π)*(1-fpr)
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acc=1/2

rate=1/2

rate = π*tpr+(1–π)*fpr

acc = π*tpr+(1–π)*(1-fpr)



The expected loss for uniform rate is (1-AUC)/2+1/4 = (1-2AUC)/4+1/2.
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AUC and expected loss (π = 1/2)
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rate = π*tpr+(1–π)*fpr

acc = π*tpr+(1–π)*(1-fpr)
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1–AUC

AUC 2π(1–π)AUC

2π(1–π)(1–AUC)

Expected loss for uniform rate is 
2π(1–π)(1-AUC)+π2/2+(1–π)2/2 = π(1–π)(1-2AUC)+1/2.

π2/2

π2/2
(1–π)2/2

(1–π)2/2



AUC as a classification performance metric

✤ AUC is a measure of ranking performance: it estimates the probability that a 
uniformly randomly selected positive and a uniformly randomly selected 
negative are ranked correctly. 

✤ The ROL curve demonstrates that it is also a measure of classification 
performance: the expected loss for a uniformly randomly chosen predicted 
positive rate is π(1–π)(1-2AUC)+1/2. 

✤ Setting the rate equal to π decreases the expected loss with 1/6 to 
π(1–π)(1-2AUC)+1/3. 

✤ also known as the precision/recall break-even point. 
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Rate-driven loss example
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Discussion

✤ If we know the operating condition (here: proportion of positives π) it is always 
better to take it into account in setting the decision threshold:

✤ for score-based thresholds this reduces the expected loss from absolute 
error to squared error (Brier score). 

✤ for rate-based thresholds this reduces the expected loss with 1/6. 

✤ One intuition is that knowing the majority class gives us an advantage. 

✤ However, if we misjudge π the resulting performance may be worse than if we 
ignore it altogether and make a random choice instead (e.g., predict positive 
with probability s and negative with probability 1–s). 
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Expected loss for optimal thresholds

✤ If we choose thresholds optimally we are ignoring all operating points that are 
not on the ROC convex hull. 

✤ In this case it can be shown that the expected 0/1 loss is equal to the 
refinement loss of the convex hull

✤ shape rather than area

✤ One way to achieve this is through a perfectly calibrated classifier

✤ implies convex ROC curve

✤ zero calibration loss so Brier score = refinement loss

✤ we can also show that in that case the Brier score is MAE/2
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The many faces of ROC analysis

✤ ROC analysis for model evaluation and selection

✤ key idea: separate performance on classes

✤ think rankers, not classifiers! 

✤ information in ROC curves not easily captured by statistics

✤ ROC visualisation for understanding ML metrics

✤ towards a theory of ML metrics

✤ types of metrics, equivalences, skew-sensitivity

✤ ROC metrics for use within ML algorithms

✤ one classifier can be many classifiers! 

✤ separate skew-insensitive parts of learning…

✤ probabilistic model, unlabelled tree

✤ …from skew-sensitive parts

✤ selecting thresholds or class weights, labelling and pruning 
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