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Shopping for PhD Students, Postdocs 

 Have you got a Master‘s Degree in CS or 

Mathematics? 

 Or do you have a PhD in a field related to machine 

learning with a number of first-tier publications? 

 Do you feel connected to statistics, programming, 

and data? 

 Do you feel attracted to research in a highly 

relevant area and a growing research community? 

 Do you feel like machine learning is a part of you 

that has been missing all along? 

 Act on these feelings, give me your cv! 
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Prerequisites 

 Statistics 

 Random variables, distributions 

 Bayes‘ equation  

 Linear algebra 

 Vectors and matrices 

 Transposed, inverted matrices 

 Eigenvalues and eigenvectors 

 Calculus 

 Derivative, partial derivative 

 Gradient 
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Respawning Points  

 In places, the material may get technically 

somewhat involved. 

 This icon markes points at which you can catch up, 

if you dropped out earlier. 
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Overview 

 Recap: Supervised learning 

 Empirical inference, graphical models 

 Logistic regression, linear models 

 Learning multiple distinct, related problems 

(transfer learning, domain adaptation) 

 Hierarchical Bayesian Inference 

 Learning under covariate shift (differing marginal 

input distribution) 

 Importance sampling 

 Direct estimation of important weights 

 Importance sampling for domain adaptation 
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Classification 

 Input: instance 

 X may be vector space. 

 Instance is a set of values for these attributes 

 

 Output: class        ; finite set    . 

 Class     also called class label. 

Xx

Yy Y

y
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Classification: Example 

 Input: instance 
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Classification: Learning Problem 

 Input to learning 

problem: Data     .  

 

 

   

 

 

   

 

 

 Training data: 
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Classification: Learning Problem 

 Input to learning 

problem: Data     .  

 

 

   

 

 

   

 

 

 Training data: 
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 Output: Model 

 

   

 

 

 For instance, 
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Empirical Inference 

 What is the modt likely class y given instance x and 

given the training data? 

   

 

 Need assumptions about data generation process 

to solve. 

11 
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Classification: Graphical Model 

 Graphical model defines 

stochastic process 

 Modeling assumptions on data 

generation  process 

 First, parameter vector  is drawn 

 This  parameterizes training data 

P(yi |xi ,) 

 Marginal distribution          is not 

part of the model; instances are 

treated as if constant: 

discriminative model! 
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Example 

 Evolution guides physiological 

parameters of humans. 

 Given these parameters and a 

combination of substances, 

nature rolles dice to determine 

whether an individual survives 

ingestion. 

 Survival is governed by 
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Empirical Inference 

 Inference of the probability of y given x and training 

data: 

   

 

 

 

 

14 

( | , , ) ( , | , , )dP y p y x X y θ x X y θ
θ

iy

nix

y

x



T
o

b
ia

s
 S

c
h

e
ffe

r 

Empirical Inference 

 Inference of the probability of y given x and training 

data: 

   

 

 

 

 

 

 No closed-form solution for classification 

 Numerical integragtion over space of all model 

parameters generally infeasible. 
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Empirical Inference 

 Inference of the probability of y given x and training 

data: 

   

 

 

 

 Approximation using only the single most 

likelyparameter vector: MAP model. 
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MAP MAP
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Empirical Inference 

 Inference of the probability of y given x and training 

data: 

   

 

 

 

 Approximation using only the single most 

likelyparameter vector: MAP model. 
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MAP MAP
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Empirical Inference 

 Inference of        : 
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Empirical Inference 

 Inference of        : 
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Empirical Inference: Logistic Regression 

 Inference of        : 
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Empirical Inference: Logistic Regression 

 Inference of        : 
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Empirical Inference: Logistic Regression 

 Inference of        : 

   

 

 

 

 

 

 

 Inference of most likely class: 
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Empirical Inference: Logistic Regression 

 Inference of        : 

   

 

 

 

 

 

 

 Inference of most likely class: 
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Empirical Inference 

 Inference of        : 

   

 

 

24 

MAP

1

arg max ( | , )

( , ,
arg max

( ,

arg max ( | , ( )

arg max ( | , ( )
n

i ii

p

P

p

P p

P y p









 

 

θ

θ

θ

θ

θ θ X y

θ X y

X y

y X θ θ

x θ θ

MAPθ

θ

iy

nix

0



T
o

b
ia

s
 S

c
h

e
ffe

r 

Empirical Inference: reg. ERM 

 Inference of        : 
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Empirical Inference: reg. ERM 

 Inference of        : 
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Empirical Inference: reg. ERM 

 Inference of        : 
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Empirical Inference: reg. ERM 

 Alternative rationalization: minimize  

risk = expected loss 

   

 Distribution    not known  

 approximateby sum over sample 

   

 Minimization problem is ill-posed; small change in 

data can lead to large change in parameters. 

Smooth by adding Tikhonov regularizer 
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Solving the Optimization Problem 

 Goal: Minimize function 

for given loss function and regularizer 

 

 Numeric solutions: 

 Gradient descent 

 Cutting plane method 

 Interior point method 

 …  
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Solving the Optimization Problem 

 Goal: Minimize function 

for given loss function and regularizer 

 

 Gradient: vector of partial derivatives 

 Ascent direction for function L(). 
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Solving the Optimization Problem 

 Goal: Minimize function 

for given loss function and regularizer 

 

 Gradient descent: 

 Iterative procedure. 

 In each step, move into direction 

of steepest descent 

 Descent direction given by  

negative gradient. 
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Solving the Optimization Problem 

 Goal: Minimize function 

for given loss function and regularizer 

 

 Gradient descent: 
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Solving the Optimization Problem 

 Goal: Minimize function 

for given loss function and regularizer 

 

 Gradient descent: 

 L() decreases in each step. 

 If L() is convex, converges  

to global minimum 

 If loss function and regularizer 

are convex, L() is convex. 
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Setting the Regularization Parameter 

 Optimization criterion has a parameter: 

 

 

 

 

 To set parameter, use grid  

search and n-fold cross  

validation (when training  

sample is large, one training-and-test split) 
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Empirical Inference 

 Graphical model formulates assumptions 

that lead to  

   

        is the most likely model given prior  

and given training data. 

 Substituting log-likelihood for general loss 

function and log-prior for general regularizer 

leads to regularized empirical risk  

minimization 

   

 Minimum can be found by gradient descent. 
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Linear Models 

 Hyperplane defined by normal vector and offset: 

 

 

 Class probability (two  

classes, logistic regression): 

   

 

 Decision function: 

   

 Classifier:  

   

 

,

T{ | ( ) ( 0})bH f b   θ θ x θx x

T( )

1
( 1| ,

1 i
i i b

P y
e

 
   


x θ

x θ

T( ) ( )i if b θ x x θ
( ) 0f θ x

( ) 0f θ x

( ) 0f θ x

θ

| |b

θ

( ) sign( ( ))i iy fθ θx x 1( ) x

2( ) x



T
o

b
ia

s
 S

c
h

e
ffe

r 

37 

Linear Models 

 Hyperplane defined by normal vector and offset: 

 

 

 Class probability (two  

classes, logistic regression): 

   

 

 Decision function: 
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Linear Models 

 Hyperplane defined by normal vector and offset: 

 

 

 Class probability (two  

classes, logistic regression): 

   

 

 Decision function: 
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Linear Models 

 Hyperplane defined by normal vector and offset: 

 

 

 Class probability (two  

classes, logistic regression): 

   

 

 Decision function: 
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Linear Models 

 Hyperplane defined by normal vector and offset: 

 

 

 Class probability (two  

classes, logistic regression): 

   

 

 Decision function: 
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Linear Models – Multi-Class Case 

 Hyperplanes defined by normal vector and offset: 

 

 

 Class probability  

(logistic regression): 

   

 

 Decision function: 

   

 Classifier:  
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Linear Models 

 Decision function of generalized linear classifiers: 

   

 Multi-class case: 

   

 Linear case: 

 General feature mapping leads to kernel machines. 
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Multiple Kids Experimenting with Drugs 

 So far: only one distribution 

for everyone. 

 What about different metabolic rates? 

Differing genetic factors? Levels of  

tolerance? 
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Multiple Kids Experimenting with Drugs 

 We could learn distinct models 

for each user j: 

   

 

   

 

 But this would treat individuals as 

independent and disregard much data 

(if many previous users died, maybe 

this does tell you something) 
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Forms of Transfer Learning 

 Learning under covariate shift 

 Only marginal distributions           and     

   differ; conditional P(yi |xi ,)  

is constant. 

 Goal: minimize risk over test distribution. 

 

 Multi-task learning, domain adaptation 

 Both, marginal distributions and  

conditional distributions P(yi |xi ,train/test)  

may differ 
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Hierarchical Bayesian Inference 

 Instead, model a common prior over 

individuals (tasks) 

 Physiology of everyone has been 

produced by the same process of 

evolution. 
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Hierarchical Bayesian Inference 

 Instead, model a common prior over 

individuals (tasks) 

 Physiology of everyone has been 

produced by the same process of 

evolution. 

   

   

 

 Substitution:  
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Hierarchical Bayesian Inference 

 Instead, model a common prior over 

individuals (tasks) 

 Physiology of everyone has been 

produced by the same process of 

evolution. 

   

   

 

 Substitution:  
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Hierarchical Bayesian Inference 

 Inference of        : 

 

 

 

 

 

 

 

 For general loss and regularizers: 
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Hierarchical Bayesian Inference 

 Parameters = sum of population-specific and 

individual parameters. 

 Decision function for individual j: 

   

 

 

 

 Optimization criterion (learning): 
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Hierarchical Bayesian Inference 

 A simple trick for implementing hierarchical Bayes  

 Decision function for individual j: 
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Hierarchical Bayesian Inference 

 A simple trick for implementing hierarchical Bayes  

 Decision function for individual j: 
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Hierarchical Bayesian Inference 

 A simple trick for implementing hierarchical Bayes  

 Decision function for individual j: 
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Hierarchical Bayesian Inference 

 A simple trick for implementing hierarchical Bayes  

 Decision function for individual j: 

 

 

   

 

 

 Learning problem: 
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Hierarchical Bayesian Inference 

 A simple trick for implementing hierarchical Bayes  

 Decision function for individual j: 

 

 

   

 

 

 Learning problem: 

   

 Implement using any learning algorithm 

by constructing appropriate 
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Hierarchical Bayesian Inference: Exercise 

 Three kids, training set 

   

 

 

 Construct the training set that maps 

this multi-task problem to a regular SVM 

 Kid 3 takes substances x. Will he live? 

How do you use the resulting SVM for  

inference? 

 Kid 4 takes substances x. Can we say  

anything about whether she will live? 
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Hierarchical Bayesian Inference 

 Graphical model: population-specific and individual 

factors determine model parameters. 

 When           ,           , 

and   , then 

   

 For general loss and regularizers, 

   

 Can be mapped to regular learning  

problem using mapping 
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Importance Sampling for Covariate Shift 

 Goal: minimize risk on test distribution 

   

 Idea: Write as expected value over training 

distribution by using appropriate weights. 

   

 

 Regularized empirical risk: 
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Importance Sampling for Covariate Shift 

 Regularized empirical risk: 

   

 

 Densities   and  unknown and high-

dimensional (impractical to estimate). 

 Density ratio is just a number for each training data 

point (should be easier to estimate). 

 Direct estimation of optimal reweighting factors.  
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Direct Estimation of Importance Weights 

 Regularized empirical risk: 
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Direct Estimation of Importance Weights 

 Density ratio can be rephrased: 
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[Bickel, Brückner, Scheffer, Discriminative learning for differing  

training and test distributions, ICML 2007] 
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Direct Estimation of Importance Weights 

 Density ratio can be rephrased: 
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Direct Estimation of Importance Weights 

 Density ratio can be estimated directly: 

 

   

 

 Train logistic regression model              

that discriminates training from test data. 
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Direct Estimation of Importance Weights 

1. Train model             using training data 

as positive class and unlabeled test data as 

negative class. 
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Direct Estimation of Importance Weights 

1. Train model             using training data 

as positive class and unlabeled test data as 

negative class. 

 

2. Infer Weights 
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Direct Estimation of Importance Weights 

1. Train model             using training data 

as positive class and unlabeled test data as 

negative class. 

 

2. Infer Weights 

 

3. Train final classifier  on weighted training data. 
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Direct Estimation of Importance Weights 

 The logistic regression of the first step also has a 

regularization parameter. 

 Set parameter using grid search and n-fold cross 

validation. 

 (Label information is whether instance is training or 

test instance.) 

 Hence, possible to tune regularization parameter. 
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[Bickel, Brückner, Scheffer, Discriminative learning for differing  

training and test distributions, ICML 2007] 



T
o

b
ia

s
 S

c
h

e
ffe

r 

Direct Estimation of Importance Weights 

 Toxicity study conducted in country X has yielded 

labeled data. 

 In country Y, physicians prefer different drugs, 

leading to a different distribution over drug 

prescriptions. 

 How would you learn a toxicity model that works 

well for country Y? 

 Does importance sampling make a difference at 

all? How does the decision whether or not a 

combination of substances is toxic depend on the 

distribution of substances administered? 
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Direct Estimation of Importance Weights 

 Goal: Model that minimizes risk on 

 Training data governed by  

 Optimal resampling weights: 

   

 

 Train logistic regression model for             using 

training data as positive data and unlabeled test 

data as negative class. 

 Calculate weights (above formula) and train 

classifier on weighted training data. 
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KLIEP 

 Alternative way of estimating density ratio. 

 Define weights        such that 

 Minimize KL-divergence between distributions of 

test data and weighted training data.  
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KLIEP 

 Minimize KL-divergence between distributions of 

test data and weighted training data.  

   

 

 Weighted training data    have 

to be nortmalized, weights have to be positive. 

 Optimization problem: 
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[Sugiyama, Suzuki, Nakajima, Kashima, H., von Bünau, Kawanabe. 

Direct importance estimation for covariate shift adaptation.  

Annals of the Institute of Statistical Mathematics, vol.60, no.4, 2008. ] 
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Kernel Mean Matching 

 Alternative way of estimating density ratio. 

 Define weights        such that 

 Expected mean feature mapping: 

   

 When         is a universal kernel, then 

there is a one-to-one relationship between 

and   

 Idea: set weights such that  
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Kernel Mean Matching 

 Idea: set weights such that  

   

 Weights have to be positive and normalized. 

 Optimization problem: 

   

 

 Optimization problem is convex. 

 Regularization: impose upper bound on individual 

weights and sum over weights.  

 Problem: need labeled test data to tune regularizer. 
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[Huang, Smola, Gretton, Borgwardt, Schölkopf, Correcting sample  

selection bias by unlabeled data. NIPS 2007.]  
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Importance Sampling for Domain Adaptation 

 Minimize risk on test distribution: 

   

 

 Rephrase as expected weighted training loss 

   

 

 Estimate on training sample: 
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Importance Sampling for Domain 
Adaptation 

 Density ratio can be rephrased: 

 

   

75 

test test train train

train train test test train train

( | , ) ( , ) 1
1

( | , ) ( , ) ( , | , )

i

i i i

p p

p p p y

 

  

 
  

 

x θ θ

x θ θ θ x

Ratio of training-

to-test set size Given x,y, how likely is instance 

to have come from training set? 

[Bickel, Sawade, Scheffer. Transfer Learning by Distribution Matching  

for Targeted Advertising. NIPS 2008.]  
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Direct Estimation of Importance Weights 

1. Train model                     using training 

data as positive class and labeled test data as 

negative class. 

 

2. Infer Weights 

 

3. Train final classifier  on weighted training data. 
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Estimation of Importance Weights 

 Importance weights match weighted training data to 

distribution of test data. 

 Learn logistic regression model       and let 

   

 

 Alternatively, minimize KL divergence between 

weighted training and test data 

 Alternatively, minimize distance between mean of 

weighted training and test data 

 Applies to domain adaptation too (some labeled 

data from target distribution required). 
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Adersarial Learning 

Current virus 

Current therapy 

Physician 

Evolution 

Mutated virus 

New therapy 
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Adersarial Learning 

Spammer 

Spam filter 
Email Service 

Provider 

Email generator Future email 

generator 

New spam filter 
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Overview 

 Learning with Invariances 

 Make result of learning process invariant to specific 

types of transformations 

 Minimax probability machine 

 Game Theory Basics 

 Game-Theoretic Learning Models 
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Robust Learning Models 

 Standard learning assumes training data drawn iid 

from distribution at application time. 

 Optimistic, if adversary tampers with distribution. 

 Robust learners minimize maximum risk for any 

distribution over a certain class of distributions. 

 Underlying assumption: adversary can choose 

distribution within certain class, and will try to inflict 

greatest possible damage for learner. 
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Learning with Invariances 

 Training set is drawn according to   

 Adversary gets to exercise transformation on 

distribution:  

 Test set is drawn according to 

 Equivalent to drawing according to  

and transforming instances:  

 Goal: Minimize regularized empirical risk: 
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Heuristic SVM Learning with Invariances 

 Dual SVM decision function 

   

 Is determined by support vectors 

   

 

 Heuristic invariant learning algorithm: 

 Learn SVM on training data L 

 If set of transformations is finite: add all possible 

                          to training set 

 Otherwise: draw some             and 

and add   to L. 

 Learn from enhanced sample. 
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Reminder: SVM-Struct 

 Hinge-loss for binary SVM: 

   

 Loss for multi-class SVM and SVM-Struct 

   

 Corresponding constraint optimization problem 
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SVM Learning with Invariances 

 Define loss   
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[Teo, Globerson, Roweis, Smola, Convex learning with invariances, 

NIPS 2007] 



T
o

b
ia

s
 S

c
h

e
ffe

r 

SVM Learning with Invariances 

 Define loss   

   

 Loss is a convex upper bound on zero-one loss. 

 Constrained optimization problem 

   

 

 

87 

',max (0,1( ( ),, ) ( ), '), ) ( ( )yy f y ff yy     θΦ θθ x xx

T

1

,

1

1
min

2

subject to the constraints: 

( ), ) ( ), ') 1  

and

: (

. 

' (

0

n

i

i

i i i i i

k
i i

i

i

f f yy yy

 





 

   





  

θ ξ

θ θ

θ θ

x xΦ



T
o

b
ia

s
 S

c
h

e
ffe

r 

SVM Learning with Invariances 

 Define loss   

   

 Constrained optimization problem 

   

 

 

 SVM-Struct working set algorithm: 

 Iterate over examples, find the one y‘ and 

transformation that violates margin the most: 

 

 Add to working set, solve OP, reiterate. 
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Minimax Probability Machine 

 Let       be the set of all distributions with mean    

and covariance   . 

 Distribution of training data: 

 Positive class has mean     , covariance matrix     . 

 Negative class has mean     , covariance matrix     . 

 At application time, adversary can choose any input 

distribution 

 

 What is the right optimization criterion for learner? 

 Based on zero-one loss 
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Minimax Probability Machine 

 Let       be the set of all distributions with mean    

and covariance   . 

 Distribution of training data: 

 Positive class has mean     , covariance matrix     . 

 Negative class has mean     , covariance matrix     . 

 At application time, adversary can choose any input 

distribution 

 

 Optimization criterion for learner: 
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[Lanckriet et al., Minimax Probability Machine, NIPS 2002] 
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Minimax Probability Machine 

 Let       be the set of all distributions with mean    

and covariance   . 

 Distribution of training data: 

 Positive class has mean     , covariance matrix     . 

 Negative class has mean     , covariance matrix     . 

 At application time, adversary can choose any input 

distribution 

 

 Optimization criterion for learner: 

   

 Can be rewritten as convex optimization problem. 

91 





1 1

, P

1 1

1 1 1 1, ,( , 1) , ( , 1)p p       x P x P

, ,1 1 1 1
( , 1) , ( , 1 0) /1( ( ), ) ( , )max p p y

f y p y d
     

   x P x θP x x x

[Lanckriet et al., Minimax Probability Machine, NIPS 2002] 



T
o

b
ia

s
 S

c
h

e
ffe

r 

Invariant SVMs 

 Family of methods for making SVM more robust 

against transformations of instances by adversary. 

 Simplistic approach: add transformed support 

vectors to training set. 

 More sophisticated: minimize, for all examples, 

maximal loss over transformation space. 

 Minimax probability machine: minimize maximal 

loss over all input distributions with observed mean 

value and variance. 
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Game Theory Basics 

 Game defined in terms of  

 Players 𝑃1, … , 𝑃𝑛 

 Action spaces 𝐴1, … , 𝐴𝑛 

 Cost functions 𝐶1, … , 𝐶𝑛 with 𝐶𝑖 ∶ 𝐴1 × ⋯× 𝐴𝑛  → ℝ  

 Cost functions are interleaved optimization problems. 

 Zero-sum game: two players,  

 One player‘s loss is other player‘s gain. 

 Non-cooperative game: 

 Players cannot exchange messages 
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Game Theory Basics 

 Static game: 

 Players act simultaneously, not knowing their 

opponents‘ move. 

 Learner and adversary act simultaneously. 

 Dynamic, extensive-form game: 

 Some ordering defined over moves, information 

about previous actions. 

 Stackelberg competition: learner committs first to 

model, then adversary transforms distribution. 
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Game Theory Basics 

 Complete information: 

 Each player know other players‘ cost functions. 

 Incomplete information: 

 At least one player is uncertain about opponents‘ 

cost functions. 

 Bayesian players infer expected cost functions over 

their beliefs. 

 

 

95 



T
o

b
ia

s
 S

c
h

e
ffe

r 

Game Theory: Zero Sum Games 

 Security level for player 𝑃1 

 𝐶 1 = min
𝑎1∈𝐴1

max
𝑎2∈𝐴2

𝐶1(𝑎1, 𝑎2) 

 Security level for player 𝑃2 

 𝐶 2 = min
𝑎2∈𝐴2

max
𝑎1∈𝐴1

𝐶2(𝑎1, 𝑎2) = −max
𝑎2∈𝐴2

min
𝑎1∈𝐴1

𝐶1(𝑎1, 𝑎2) 

 Example 

 𝐶 1 = 2, row 3 

 𝐶 2 = 1, column 1 
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P2 

P1 

(4, -4)  (-1, 1)  (-2, 2)  

(-1, 1)  (-2, 2) (3, -3)  

(1, -1)  (2, -2)  (1, -1)  
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Game Theory: Zero Sum Games 

 Minimax strategy for player 𝑃1 

 𝑎 1 = argmin
𝑎1∈𝐴1

max
𝑎2∈𝐴2

𝐶1(𝑎1, 𝑎2) 

 Minimax strategy for player 𝑃2 

 𝑎 2 = argmin
𝑎2∈𝐴2

max
𝑎1∈𝐴1

𝐶2(𝑎1, 𝑎2) 

 Example 

 𝑎 1 = 3, 𝑎 2 = 1 

 𝐶1 𝑎 1, 𝑎 2 = 1 

 It holds that 

 𝐶 1 ≥ 𝐶1(𝑎 1, 𝑎 2) ≥ −𝐶 2 

 No guaranteed stability 
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Game Theory: Non-Zero Sum Games 

 Generalization of zero-sum games 

 𝐶1  =  −𝐶2 no longer prerequisite 

 Minimax strategy 

 Still guarantees least maximal costs 

 Not well motivated if opponent wants to minimize 

own costs and costs not directly antagonistic. 
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Game Theory: Nash Equilibrium 

 Equilibrium (stable points) 

 (𝑎1
∗, 𝑎2

∗) is Nash equilibrium if 

 𝑎1
∗ = argmin

𝑎1∈𝐴1

𝐶1(𝑎1, 𝑎2
∗)  

 𝑎2
∗ = argmin

𝑎2∈𝐴2

𝐶2(𝑎1
∗ , 𝑎2)  
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(-1, 1)  (3, -3) (3, -3)  

(1, -1)  (2, -2)  (1, -1)  

P2 

P1 

(4, -4)  (-1, 1)  (-2, 2)  

(-1, 1)  (-2, 2) (3, -3)  

(1, -1)  (2, -2)  (1, -1)  

No equilibrium Equilibrium  
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Game Theory: Nash Equilibrium 

 Equilibrium (stable points) 

 (𝑎1
∗, 𝑎2

∗) is Nash equilibrium if 

 𝑎1
∗ = argmin

𝑎1∈𝐴1

𝐶1(𝑎1, 𝑎2
∗)  

 𝑎2
∗ = argmin

𝑎2∈𝐴2

𝐶2(𝑎1
∗ , 𝑎2)  

 In a Nash equilibrium, each player reacts optimally 

to their opponent‘s move. 
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Game Theory: Nash Equilibrium 

 Equilibrium (stable points) 

 (𝑎1
∗, 𝑎2

∗) is Nash equilibrium if 

 𝑎1
∗ = argmin

𝑎1∈𝐴1

𝐶1(𝑎1, 𝑎2
∗)  

 𝑎2
∗ = argmin

𝑎2∈𝐴2

𝐶2(𝑎1
∗ , 𝑎2)  

 In a Nash equilibrium, each player reacts optimally 

to their opponent‘s move. 

 Simple algorithm: imagine any move; infer 

opponent‘s optimal reaction; infer own optimal 

reaction; reiterate until fixed point is reached. 

 Fixed point is Nach equilibrium. 
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Game Theory: Nash Equilibrium 

 When does it make sense to acto according to 

Nash equilibrium? 

 Minimax is overly pessimistic: 

 Adversaries do not want to maximize your costs but 

want to minimize their own costs. 

 When adversary will act according to Nash 

equilibrium, using this equilibrium too is optimal. 

 Only makes sense to assume if equilibrium exists. 

 When players act according to different equilibria, 

then outcome can be arbitrarily bad for all players. 

 Acting according to Nash equilibrium makes most 

sense if equilibrium is unique. 
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Game Theory: Extensive-Form Games 

 So far static games: players act simultaneously 

 No information about adversary‘s action exploitable. 

 Extensive form games: players act in defined order.  

 Game takes the for of a tree. 

 Simplest form: Stackelberg competition 

 First player acts first 

 Then, adversary acts (knowing the first player‘s 

move). 

 Then, costs are inferred. 
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Game Theory: Extensive-Form Games 

 Simplest form: Stackelberg competition 

 First player acts first 

 Then, adversary acts (knowing the first player‘s 

move). 

 Adversary solves simple minimization problem: 

  𝑎2
∗ = argmin

𝑎2∈A2

𝑉2 𝑎1
∗, 𝑎2 . 

 First player has to account for adversary: 

 𝑎1
∗ = argmin

𝑎1∈A1

max
𝑎2∈A2

𝑉1 𝑎1, 𝑎2  
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Game Theory Basics 

 Static (simultaneous actions) vs. extensive-form. 

 Non-cooperative (no message passing) 

 Zero-sum (antagonistic costs) vs non-zero-sum 

 Zero-sum games: minimax strategies minimizes 

worst-case (over adversarial action space) costs. 

 Nash equilibrium: deviating unilaterally increases 

costs for either player. 

 Non-zero-sum games:  

 Nash equilibrium optimal if adversary will act 

according to the same equilibrium. 

 Does the game have an equilibrium? Is it unique? 

Will the adversary be rational enough to infer it? 
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Game-Theoretic Learning Models 
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Training  

distribution 

Test distribution  Adversary (v = +1) 

Learner (v = –1) 

Costs for adversary 

Costs for learner 

Interleaved  

optimization  

problems 

Model parameters 
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Game-Theoretic Learning Models   

 Action of the data generator (adversary) 

 Theoretically: transform input distribution 

 Empirically: transform data 

 

 Action of the learner: 

 Choose model parameters 

107 

( , ) ( , )p y p y xx

'{( , )} , ){( ' }'i i i iD y yD  x x

T( ) ( )f θ θ xx



T
o

b
ia

s
 S

c
h

e
ffe

r 

Game-Theoretic Learning Models   

 Empirical costs of the data generator (adversary) 

   

 

 

 Empirical costs of the learner 
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Game-Theoretic Learning Models   

 Empirical costs of the data generator (adversary) 

   

 

 

 Empirical costs of the learner 
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Interleaved cost functions: each player‘s costs 

depend also on other player‘s action. No such 

thing as cost-minimizing parameters . 
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Game-Theoretic Learning Models   

 Empirical costs of the data generator (adversary) 

   

 

 

 Empirical costs of the learner 

   

 

 

 Empirical costs cannot be minimized directly 

because opponent‘s action is not known. 

110 

T

1 1 1 1

1

1
( , ) = ( ( ), ) ( , )

n

i i

i

C D y D D
n

    



   θ θ x

T

1 1 1 1

1

1
( , ) = ( ( ), ) ( )

n

i i

i

C D y
n

    



   θ θ x θ



T
o

b
ia

s
 S

c
h

e
ffe

r 

Game-Theoretic Learning Models   

 Worst-case solution for learner: 

   

 = learning with invariances 

 Minimizes               if D=D´. 

 = Adversary will do nothing; iid assumption 

 

 Unrealistically optimistic. 
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Game-Theoretic Learning Models   

 Naive solution for learner: 

   

 = learn from training data 

 Minimizes               if adversary will try to maximize 

learner‘s costs (as opposed to minimizing own 

costs). 

 

 Too pesstimic. 
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Nash Equilibrial Prediction Models 

 

 

 

 

 
 

 Learner‘s action is optimal reaction to adversary‘s action 

which is optimal reaction… 

 Fixed point of optimal reaction is a Nash equilibrium. 

 Probably not quite realistic for most applications, but 

perhaps more realistic than previous solutions. 
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Nash-Equilibrial Prediction Models 

 Theorem: Nash equilibrium for prediction games 

exist and is unique if 

 Both loss functions have identical curvature, and 

 Regularization parameters are sufficiently large 
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[Brückner, Kanzow, Scheffer. Static Prediction Games for Adversarial  

Learning Problems. JMLR, 13:2617-2654, 2012] 
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Nash-Equilibrial Prediction Models 

 Nach equilibrium meets: 

   

   

 

 Nikaido-Isoda function: summed improvement that 

players can enjoy by changing their action 

   

 Has to be zero at Nash equilibrium 

 Theorem: descent direction for Nikaido-Isoda 

function exists and can be calculated.  

 Leads to Nash-SVM that finds Nash equilibrial 

prediction model. 
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Exercise 

 Loss / cost functions of spammer and email service 

provider? 

   

 

   

 Regularizers for learner and spammer? 

   

   

 Possible transformations of spammer? 
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Exercise 

 Loss / cost functions of spammer and email service 

provider? 

   

 

   

 Regularizers for learner and spammer? 

   

   

 Possible transformations of spammer? 

 Can transform any training matrix into any other 

matrix. 
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Nash-Equilibrial Prediction Models 

 Learner and adversary act simultaneously. 

 Both have distinct, conflicting but not necessarily 

antagonistic cost functions 

 Unique Nash equilibrium exist if curvature of loss 

function matches and if regularizers are sufficiently 

large 

 Equilibrium point is optimal strategy for learner if 

adversary also acts according to it. 

 Nash-SVM finds equilibrium point 

 Empirically, more robust for spam filtering than 

SVM and SVM with inveriances. 
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Stackelberg Prediction Games 

 Two-stage game: 

 Learner fixes parameters of predictive model 

 Adversary then transforms input distribution. 

 Learner chooses optimal parameters under the 

assumption that adversary will minimize his costs. 

 Bilevel optimization problem: 
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Stackelberg Prediction Games 

 Unique Stackelberg equilibrium always exists. 

 Can be rephrased as constraint optimization 

problem (KKT conditions of lower-level OP). 

 Locally optimal solution by SQP solver or interior-

points method. 
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[Brückner, Scheffer. Stackelberg games for adversarial prediction problems. 

ACM KDD 2011.] 
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Game-Theoretic Learning Models 

 Interests of learner and adversary modeled as loss 

functions. 

 Transformation costs and prior on model 

parameteres modeled as regularizers. 

 Interleaved optimization problems constitute a 

game between learner and adversary. 

 Ragularizers and instance-specific costs make 

costs non-antagonistic.  

 Minimax solution too pessimistic 

 Nash-SVM chooses predictive model according to 

Nash equilibrium. 

 Stackelberg-SVM: learner acts first, then adversary. 
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