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Statistical Analysis of Experiments in Data Mining and 
Computational IntelligenceComputational Intelligence 

How must I conduct statistical comparisonsHow must I conduct statistical comparisons 
in my Experimental Study? On the use of 

N t i T t d C St di

I thi t lk

Nonparametric Tests and Case Studies.

In this talk

We focus on the use of statistical tests forWe focus on the use of statistical tests for 

analyzing the results obtained in a design of 

experiments within the fields of Data Mining and 

Computational Intelligence.
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Statistical Analysis of Experiments in Data Mining and 
Computational IntelligenceComputational Intelligence 

Motivation

The experimental analysis on the 
performance of a new method is a crucial 
and necessary task to carry out in a researchand necessary task to carry out in a research 
on Data Mining or Computational 
Intelligence (among other fields)Intelligence (among other fields).

Deciding when an algorithm is better than 
other one may not be a trivial task.other one  may not be a trivial task. 
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Motivation

Deciding when an algorithm is better than 
other one  may not be a trivial task. 

You cannot show the 
Experimental papers without
statistics tests may be rejected

superiority of your 
method withoutmethod without 
statistical tests.
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Motivation
 Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 

aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7 
aus 55 5 81 9 85 4 77 5 85 2 83 3 85 7 aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7 
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8 
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2 
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3 
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0 
cmc 42 7 44 4 46 8 50 6 52 1 49 8 52 3 

Deciding when an 
algorithm is better cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3 

gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6 
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9 
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2 
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7 
krk 52 2 89 4 94 9 87 0 98 3 98 4 98 6 

algorithm is better 
than other one  may 
not be a trivial task. 

krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6 
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4 
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0 
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4 
mus 51 8 100 0 100 0 96 4 100 0 100 0 99 8 Example  for mus 51.8 100.0 100.0 96.4 100.0 100.0 99.8 
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0 
pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0 
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7 
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1 
sick 93 8 96 1 96 3 93 3 98 4 97 0 96 7 

p
classification

Large Variations in 
sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7 
soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2 
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4 
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3 
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2 
vote 61 4 92 4 92 6 90 1 96 3 96 5 95 4 

Accuracies of Different 
Classifiers

vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4 
vow 9.1 99.1 96.6 65.3 80.7 78.3 87.6 
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3 
zoo 41.7 94.6 92.5 95.4 91.6 92.5 92.6 
Avg 44.8 80.0 82.4 78.0 82.1 81.8 81.7 
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Motivation
 Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 

aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7 
aus 55 5 81 9 85 4 77 5 85 2 83 3 85 7 aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7 
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8 
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2 
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3 
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0 
cmc 42 7 44 4 46 8 50 6 52 1 49 8 52 3 

Alg. 4 is the winner in 8 
problems with average 78 0 cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3 

gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6 
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9 
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2 
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7 
krk 52 2 89 4 94 9 87 0 98 3 98 4 98 6 

problems with average 78.0

Alg. 2 is the winner  for 4 
problems with average 80.0

krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6 
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4 
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0 
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4 
mus 51 8 100 0 100 0 96 4 100 0 100 0 99 8 

What is the best between  
both?

mus 51.8 100.0 100.0 96.4 100.0 100.0 99.8 
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0 
pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0 
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7 
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1 
sick 93 8 96 1 96 3 93 3 98 4 97 0 96 7 sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7 
soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2 
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4 
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3 
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2 
vote 61 4 92 4 92 6 90 1 96 3 96 5 95 4 vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4 
vow 9.1 99.1 96.6 65.3 80.7 78.3 87.6 
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3 
zoo 41.7 94.6 92.5 95.4 91.6 92.5 92.6 
Avg 44.8 80.0 82.4 78.0 82.1 81.8 81.7 
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Motivation
 Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 

aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7 
aus 55 5 81 9 85 4 77 5 85 2 83 3 85 7 aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7 
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8 
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2 
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3 
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0 
cmc 42 7 44 4 46 8 50 6 52 1 49 8 52 3 

We must use 
statistical tests for  

cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3 
gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6 
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9 
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2 
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7 
krk 52 2 89 4 94 9 87 0 98 3 98 4 98 6 

comparing the 
algorithms.

krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6 
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4 
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0 
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4 
mus 51 8 100 0 100 0 96 4 100 0 100 0 99 8 

The problem: 
mus 51.8 100.0 100.0 96.4 100.0 100.0 99.8 
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0 
pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0 
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7 
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1 
sick 93 8 96 1 96 3 93 3 98 4 97 0 96 7 

How must I do the
statistical

sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7 
soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2 
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4 
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3 
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2 
vote 61 4 92 4 92 6 90 1 96 3 96 5 95 4 

experimental study?

What tests must I vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4 
vow 9.1 99.1 96.6 65.3 80.7 78.3 87.6 
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3 
zoo 41.7 94.6 92.5 95.4 91.6 92.5 92.6 
Avg 44.8 80.0 82.4 78.0 82.1 81.8 81.7 

use?
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Objective

T h lt th f t ti ti l t tTo show some results on the use of statistical tests 

(nonparametric tests) for comparing algorithms in the ( p ) p g g

fields of Data Mining and Computational Intelligence. 

We will not discuss the performance measures that can be 
used neither the choice on the set of benchmarks.used neither the choice on the set of benchmarks. 

Some guidelines on the use of appropriate nonparametrics
i i i i itests depending on the situation will be given.
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OUTLINE

 Introduction to Inferential Statistics

OU N

 Conditions for the safe use of parametric tests

 Basic non-parametric tests and case studies

 Advanced non-parametric tests and case studiesAdvanced non parametric tests and case studies

 Lessons Learned

 Books of Interest and References

S ft Software
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OUTLINE (I)
 Introduction to Inferential Statistics
 Conditions for the safe use of parametric tests

OU N ( )

 Conditions for the safe use of parametric tests
 Theoretical background
 Checking the conditions in Data Mining Experimentsg g p
 Checking the conditions in Parameter Optimization Experiments

 Basic non-parametric tests and case studies
 For Pairwise Comparisons
 For Multiple Comparisons involving control method

D t Mi i N l N t k d G ti L i Data Mining: Neural Networks and Genetic Learning
 Evolutionary Algorithms: CEC’05 Special Session on Parameter

Optimizationp
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OUTLINE (II)
 Advanced non-parametric tests and case studies

 For Multiple Comparisons involving control method

OU N ( )

 For Multiple Comparisons involving control method
 Post-hoc Procedures
 Adjusted p-valuesj p
 Detecting all pairwise differences in a multiple comparison

 Lessons Learned
 Considerations on the use of nonparametric tests
 Recommendations on the use of nonparametric tests
 Frequent Questions Frequent Questions

 Books of Interest and References
 Software Software
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Website http://sci2s.ugr.es/sicidm/
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OUTLINE (I)
 Introduction to Inferential Statistics
 Conditions for the safe use of parametric tests

OU N ( )

 Conditions for the safe use of parametric tests
 Theoretical background
 Checking the conditions in Data Mining Experimentsg g p
 Checking the conditions in Parameter Optimization Experiments

 Basic non-parametric tests and case studies
 For Pairwise Comparisons
 For Multiple Comparisons involving control method

D t Mi i N l N t k d G ti L i Data Mining: Neural Networks and Genetic Learning
 Evolutionary Algorithms: CEC’05 Special Session on Parameter

Optimizationp
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Introduction to Inferential Statistics

Inferential Statistics

provide measures of how well your data (results ofprovide measures of how well your data (results of 
experiments) support your hypothesis and if your 
data support the required generalization beyonddata support the required generalization beyond 
what was tested (significance tests)

For example: Comparing two or various sets of 
experiments/results  in a computational problem. 

Parametric versus Nonparametric Statistics Parametric versus Nonparametric Statistics –– When When 
h d hi h i f l?h d hi h i f l?to use them and which is more powerful?to use them and which is more powerful?
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Introduction to Inferential Statistics

What is an hypothesis?

a prediction about a single population or about thea prediction about a single population or about the 
relationship between two or more populations.

Hypothesis testing is  procedure in which sample 
data are employed to evaluate a hypothesis.

15



Introduction to Inferential Statistics

What is an hypothesis?

a prediction about a single population or about thea prediction about a single population or about the 
relationship between two or more populations.

Hypothesis testing is  procedure in which sample 
data are employed to evaluate a hypothesis.

C I idCan I consider 
a hypothesis for 
these data?

16
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Introduction to Inferential Statistics

What is an hypothesis?

a prediction about a single population or about thea prediction about a single population or about the 
relationship between two or more populations.

Hypothesis testing is  procedure in which sample 
data are employed to evaluate a hypothesis.

The null hypothesis is a statement of no effect or no 
difference and it is expected to be rejected by thedifference and it is expected to be rejected by the 
experimenter. 17



Introduction to Inferential Statistics

Examples of Null Hypothesis
Ho: The 2 samples come from populations with the same 
distributions

Examples of Null-Hypothesis

distributions.
or, 

di f l ti 1 di f l ti 2median of population 1 = median of population 2

(generalization with n samples)

18



Introduction to Inferential Statistics

Significance level αSignificance level α
It is a confidence threshold that informs us whether or not 
to reject the null hypothesisto reject the null hypothesis.

It must be pre-defined by the experimenter and aIt must be pre defined by the experimenter and a 
significance level of 90% (0.1) or 95% (0.05) is usually 
used, also 99% (0.01).

If you decide for a significance level of 0.05 (95% certainty 
that there indeed is a significant difference), then a p-valueg ), p
(datum provided by the test) smaller than 0.05 indicates that 
you can reject the null-hypothesis.

19



Introduction to Inferential Statistics

Significance level α

 Important to Remember: the null-hypothesis 

Significance level α

p yp
generally is associated to an hypothesis of 
equality or equivalence (equal means or 
distributions)distributions).

 So, if a test obtains p = 0.07, it means that you 
cannot reject the null hypothesis of equality 

 there is no significant differences in the  there is no significant differences in the 
analysis conducted

20



Introduction to Inferential Statistics

p value
 Instead of stipulating a priori level of significance

( l h ) ld l l t th ll t l l f

p-value

 (alpha), one could calculate the smallest level of
significance that results in the rejection of the null
hypothesis.hypothesis.

 This is the p-value, it provides informationp , p
about “how significant” the result is.

 It does it without commiting to a particular
level of significancelevel of significance.

21



Introduction to Inferential Statistics

• Compare two variables

• If more than two variablesIf more than two variables

22



Introduction to Inferential Statistics

Th i t l t t i t t i l t t b i

Parametric Nonparametric

There is at least one nonparametric test equivalent to a basic 
parametric test

• Compare two variables
Parametric Nonparametric
t-test Sign test

Wilcoxon signed 

• If more than two variables

Wilcoxon signed 
rank test

ANOVA and Friedman testIf more than two variables
derivatives and more…
Tukey, 
Tamhane  

Bonferroni-Dunn,
H l  tTamhane, ... Holm, etc…

23



Introduction to Inferential Statistics

Parametric AssumptionsParametric Assumptions 
(t-test, ANOVA, …)

 The observations must be independent

 Normality: The observations must be drawn 
from normally distributed populations

 Homoscedasticity: These populations must 
h  h   ihave the same variances

24



Introduction to Inferential Statistics

Normality Tip

If a histogram representing your data looks like this,

you can conduct a parametric test!

25



Introduction to Inferential Statistics

Otherwise, don’t conduct a parametric test! 

The conclusions could be erroneous

80
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30

0

Histogram 26



Introduction to Inferential Statistics

Nonparametric AssumptionsNonparametric Assumptions 
(t-test, ANOVA, …)

 The observations must be independent

 The data must be represented by ordinal 
numbering.

How do nonparametric tests work?
Most nonparametric tests use ranks instead of raw data for 
their hypothesis testing.
 Th l t f ti d i d t bt i They apply a transformation procedure in order to obtain 
ranking data. 27
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OUTLINE

 Introduction to Inferential Statistics

OU N

 Conditions for the safe use of parametric tests

 Basic non-parametric tests and case studies

 Advanced non-parametric tests and case studiesAdvanced non parametric tests and case studies

 Lessons Learned

 Books of Interest and References

S ft Software
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OUTLINE (I)
 Introduction to Inferential Statistics
 Conditions for the safe use of parametric tests

OU N ( )

 Conditions for the safe use of parametric tests
 Theoretical background
 Checking the conditions in Data Mining Experimentsg g p
 Checking the conditions in Parameter Optimization Experiments

 Basic non-parametric tests and case studies
 For Pairwise Comparisons
 For Multiple Comparisons involving control method

D t Mi i N l N t k d G ti L i Data Mining: Neural Networks and Genetic Learning
 Evolutionary Algorithms: CEC’05 Special Session on Parameter

Optimizationp
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Conditions for the safe use of parametric tests

 Theoretical background

Co d o s o e s e use o p e c es s

 Theoretical background
 Checking the conditions in Data Mining

ExperimentsExperiments
 Checking the conditions in Parameter

O i i i E iOptimization Experiments

30



Conditions for the Safe Use of Parametric Tests
Theoretical Background

The distinction between parametric and nonparametric test

Theoretical Background

The distinction between parametric and nonparametric test
is based on the level of measure represented by the data
which will be analyzed.

A parametric test is able to use data composed by real
values: But when we dispose of this type of data, we should notp yp ,
always use a parametric test.

There are some assumptions for a safe usage of parametric
tests ad the non fulfillment of these conditions might cause atests ad the non fulfillment of these conditions might cause a
statistical analysis to lose credibility.

31



Conditions for the Safe Use of Parametric Tests
Theoretical Background

In order to use the parametric tests, is necessary to check the

Theoretical Background

following conditions:

Independence: In statistics, two events are independent whenp p
the fact that one occurs does not modify the probability of the
other one occurring.
 When we compare two optimization algorithms they are usually

independent.

 When we compare two machine learning methods, it depends on the
partition:

 The independency is not truly verified in 10 fcv (a portion of The independency is not truly verified in 10-fcv (a portion of
samples is used either for training and testing in different
partitions.

 Hold out partitions can be safely take as independent, since
training and test partitions do not overlap. 32



Conditions for the Safe Use of Parametric Tests
Theoretical BackgroundTheoretical Background

Parametric tests assume that the data are taken from normal
distributions

Normality: An observation is normal when its behaviour
follows a normal or Gauss distribution with a certain value of
average  and variance  A normality test applied over a sample
can indicate the presence or absence of this condition in observed
d tdata.

• Kolmogorov-Smirnovg

• Shapiro-Wilk

• D’Agostino-Pearson
33



Conditions for the Safe Use of Parametric Tests
Theoretical Background

Kolmogorov-Smirnov: It compares the accumulated distribution
f b d d i h h l d G i di ib i

Theoretical Background

of observed data with the accumulated Gaussian distribution
expected.

Shapiro-Wilk: It analyzes the observed data to compute the level
of symmetry and kurtosis (shape of the curve) in order to
compute the difference with respect to a Gaussian distributioncompute the difference with respect to a Gaussian distribution
afterwards.

D’A ti P It t th k d k t i tD’Agostino-Pearson: It computes the skewness and kurtosis to
quantify how far from the Gaussian distribution is in terms of
asymmetry and shapeasymmetry and shape.

34



Conditions for the Safe Use of Parametric Tests
Theoretical Background

Heteroscedasticity: This property indicates the existence of a

Theoretical Background

Heteroscedasticity: This property indicates the existence of a
violation of the hypothesis of equality of variances.

Levene’s test is used for checking if k samples present or not
this homogeneity of variances (homoscedasticity).

Two sample assuming 
equal variances

Two sample assuming  the  
l iequal variances unequal variances

35



Conditions for the Safe Use of Parametric Tests
Theoretical Background

On the parametric tests

Theoretical Background

On the parametric tests
T-test

ANOVA Analysis

36



Conditions for the Safe Use of Parametric Tests
Theoretical BackgroundTheoretical Background

1.96: "normal score" or 
"Z "

1.96 is the approximate 
value of the 97.5 percentile

"Z score"

value of the 97.5 percentile 
point of the normal 
distribution used in 

b bilit d t ti tiprobability and statistics. 
95% of the area under a 
normal curve lies within 
roughly 1.96 standard 
deviations of the mean, and 
due to the central limitdue to the central limit 
theorem, this number is 
therefore used in the 

37
construction of approximate 
95% confidence intervals.
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Conditions for the safe use of parametric tests

 Theoretical background

Co d o s o e s e use o p e c es s

 Theoretical background
 Checking the conditions in Data Mining

ExperimentsExperiments
 Checking the conditions in Parameter

O i i i E iOptimization Experiments
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Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

FIRST CASE STUDY: Neural networks models:

Checking the Conditions in Data Mining Experiments

MLP, RBFN (3 versions), LQV

H ld O t V lid ti (HOV) 10FCV d 5 2CV (5 h )Hold-Out Validation (HOV), 10FCV and 5x2CV (5 runs each one)

39
Refernce: J. Luengo, S. García, F. Herrera, A Study on the Use of Statistical Tests for Experimentation with 
Neural Networks: Analysis of Parametric Test Conditions and Non-Parametric Tests. Expert Systems with 
Applications 36 (2009) 7798-7808 



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

TABLE 1. Kolmogorov-Smirnov test

Checking the Conditions in Data Mining Experiments

a p-value smaller than 0.05 indicates that you can reject the null-hypothesis 40



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

TABLE 2. Comparison among validations

Checking the Conditions in Data Mining Experiments

a p-value smaller than 0.05 indicates that you can reject the null-hypothesis 41



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

Histograms and Q-Q Grapics

Checking the Conditions in Data Mining Experiments

* A Q-Q graphic represents a confrontation between the quartiles from data
observed and those from the normal distributions. Absolute lack of normality. 42



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

Histograms and Q-Q Grapics

Checking the Conditions in Data Mining Experiments

43



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

TABLE 3. Test of HETEROSCEDASTICITY OF LEVENE 

Checking the Conditions in Data Mining Experiments

(BASED ON MEANS)

Table 3 shows the results by applying Levene’s tests, where the
symbol “*” indicates that the variances of the distributions of
the different algorithms for a certain function are notthe different algorithms for a certain function are not
homogeneities (we reject the null hypothesis). 44



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

SECOND CASE STUDY G ti B d M hi L i

Checking the Conditions in Data Mining Experiments

 We have chosen four Genetic Interval Rule 

SECOND CASE STUDY: Genetics-Based Machine Learning

Based Algorithms:

 Pittsburgh Genetic Interval Rule Learning Algorithm Pittsburgh Genetic Interval Rule Learning Algorithm.
 XCS Algorithm.
 GASSIST Algorithm.
 HIDER Algorithm.

 GBML will be analyzed by two performance GBML will be analyzed by two performance
measures: Accuracy and Cohen’s kappa.

 How we state which is the best?
45



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

Experimental Study

Checking the Conditions in Data Mining Experiments

Experimental Study
 We have selected 14 data sets from UCI 

repository.epos to y
Data set   #Ex.   #Atts.   #C.  

bupa (bup)   345 6 2
cleveland (cle) 297 13 5cleveland (cle)   297 13 5
ecoli (eco)   336 7 8
glass (gla)   214 9 7

haberman (hab)   306 3 2
iris (iri)   150 4 3

monk‐2 (mon)   432 6 2
new‐Thyroid (new)   215 5 3

pima (pim) 768 8 2pima (pim)   768 8 2
vehicle (veh)   846 18 4
vowel (vow)   988 13 11
wine (win)   178 13 3

wisconsin (wis)   683 9 2
yeast (yea)   1484 8 10 46



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

TABLE I Normality condition in accuracy

Checking the Conditions in Data Mining Experiments

TABLE I. Normality condition in accuracy

a value smaller than 0.05 indicates that you can reject the null-hypothesis
(i.e. the normality condition is not satisfied) and it is noted with “*”

47
S. García, A. Fernandez, J. Luengo, F. Herrera, A Study of Statistical Techniques and
Performance Measures for Genetics-Based Machine Learning: Accuracy and
Interpretability. Soft Computing 13:10 (2009) 959-977, doi:10.1007/s00500-008-0392-y.



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Data Mining Experiments

GBML Case of Study: some facts

Checking the Conditions in Data Mining Experiments

y

 Conditions needed for the application of 
parametric tests are not fulfilled in some cases.
 The size of the sample should be enough (50)

 One main factor: the nature of the problem
G hi ll     Q Q hi  d  Graphically, we can use Q-Q graphics and 
histograms to see the normality

48



Conditions for the Safe Use of Parametric Tests
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Analyzing parametric tests

Checking the Conditions in Data Mining Experiments

y g p

* A Q-Q graphic represents a confrontation between the quartiles from data
observed and those from the normal distributions. 49
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TABLE 2. Test of HETEROSCEDASTICITY OF LEVENE 

(BASED ON MEANS)

Table 2 shows the results by applying Levene’s tests where theTable 2 shows the results by applying Levene’s tests, where the
symbol “*” indicates that the variances of the distributions of
the different algorithms for a certain function are not
homogeneities (we reject the null hypothesis).
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NN and GBML do not verify parametric conditions.

Similar studies can be presented with other learning
algorithms.algorithms.
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Conditions for the safe use of parametric tests

 Theoretical background

Co d o s o e s e use o p e c es s

 Theoretical background
 Checking the conditions in Data Mining

ExperimentsExperiments
 Checking the conditions in Parameter

O i i i E iOptimization Experiments
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Special Session on Real Parameter Optimization at CEC 05

Checking the Conditions in Parameter Optimization Experiments

25 f ti ith l t 10 i bl

Special Session on Real-Parameter Optimization at CEC-05,
Edinburgh, UK, 2-5 Sept. 2005 

25 functions with real parameters, 10 variables:  
f1-f5 unimodal functions     f6-f25 multimodal functions

Source: S. García, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-
Parametric Tests for Analyzing the Evolutionary Algorithms' Behaviour: A Case 
Study on the CEC'2005 Special Session on Real Parameter Optimization. Journal of 
Heuristics, 13:10 (2009) 959-977. 53
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OUTLINE (I)
 Introduction to Inferential Statistics
 Conditions for the safe use of parametric tests

OU N ( )

 Conditions for the safe use of parametric tests
 Theoretical background
 Checking the conditions in Data Mining Experimentsg g p
 Checking the conditions in Parameter Optimization Experiments

 Basic non-parametric tests and case studies
 For Pairwise Comparisons
 For Multiple Comparisons involving control method

D t Mi i N l N t k d G ti L i Data Mining: Neural Networks and Genetic Learning
 Evolutionary Algorithms: CEC’05 Special Session on Parameter

Optimizationp
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Basic Non-Parametric Tests and Case Studies

 For Pairwise Comparisons
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 For Pairwise Comparisons
 For Multiple Comparisons involving a Control 

MethodMethod
 Data Mining: Neural Networks and Genetic

L iLearning
 Evolutionary Algorithms: CEC’05 Special Session

of Parameter Optimization
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Pairwise Comparisons involve Two-Sample Tests

For Pairwise Comparisons

Pairwise Comparisons involve Two Sample Tests

When comparing means of two samples to make inferences aboutWhen comparing means of two samples to make inferences about 
differences between two populations, there are 4 main tests that could 
be used:

U npaired data Paired data

Param etric test Independent-Sam ples
T T t

Paired-Sam ples
T T tT-Test T-Test

N on-param etric test M ann-W hitney U test W ilcoxonN on param etric test M ann W hitney U  test
(or W ilcoxon rank-
sum  test)

W ilcoxon
Signed-R anks
test

(Also, Sign test)
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Pairwise Comparisons involve Two-Sample Tests

For Pairwise Comparisons

Pairwise Comparisons involve Two Sample Tests

When comparing means of two samples to make inferences aboutWhen comparing means of two samples to make inferences about 
differences between two populations, there are 4 main tests that could 
be used:

U npaired data Paired data

Param etric test Independent-Sam ples
T T t

Paired-Sam ples
T T tT-Test T-Test

N on-param etric test M ann-W hitney U test W ilcoxonN on param etric test M ann W hitney U  test
(or W ilcoxon rank-
sum  test)

W ilcoxon
Signed-R anks
test

(Also, Sign test)
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For Pairwise Comparisons

Count of Wins, Losses and Ties: The Sign Test

For Pairwise Comparisons

Count of Wins, Losses and Ties: The Sign Test

It a classic form of inferential statistics that use the binomialIt a classic form of inferential statistics that use the binomial 
distribution. If two algorithms compared are, assumed under the null-
hypothesis, equivalent, each should win approximately N/2 out of N 
datasets/problems.

The number of wins are distributed following a binomial distribution. g

F t b f d t t / bl th b f i iFor a greater number of datasets/problems, the number of wins is 
under the null-hypothesis distributed according to                          .)2/,2/( NNN
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For Pairwise Comparisons

The Sign Test

For Pairwise Comparisons

The Sign Test

1 Calculate the # of winnings and losses by comparing runs with the1. Calculate the # of winnings and losses by comparing runs with the

same initial data.

2. Check a sign test table to show significance of two methods. 

h i i l b f i d i h f ll i bl fThe critical number of wins are presented in the following Table for 
α=0.05 and α=0.1:

66The number of wins are distributed following a binomial distribution. 
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The Sign Test

For Pairwise Comparisons

The Sign Test

For a greater number of datasets/problems the number of wins isFor a greater number of datasets/problems, the number of wins is 
under the null-hypothesis distributed according to                          .

Thus if an algorithm obtains a number of wins which is at least

)2/,2/( NNN

Thus, if an algorithm obtains a number of wins which is at least

N/2 +                  the algorithm is significantly better with α=0.05. 
Ti d lit b t th t l ith If th dd

2/96.1 N
Tieds are split between the two algorithms. If they are an odd 
number, one is ignored.
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Example of the Sign Test (Demsar 2006, JMLR)

For Pairwise Comparisons

p g ( , )
dataset C4.5 C4.5m Sign

Adult 0.763 0.768 +

B t 0 599 0 591
Classification problem with 14 datasets. 

Breast 0.599 0.591 -

Wisconsin 0.954 0.971 +

Cmc 0.628 0.661 +

C4.5 standard vs C4.5 with m parameter
(minimum number of examples for
creating a leaf) tuned for AUC measure

Ionosphere 0.882 0.888 +

Iris 0.936 0.931 -

Bupa 0 661 0 668 +

creating a leaf) tuned for AUC measure.

Number of wins of C4.5m = 10
Bupa 0.661 0.668 +

Lung 0.583 0.583 =

Lymphography 0.775 0.838 +
Number of loses of C4.5m = 2

N b f ti 2Mushroom 1.000 1.000 =

Tumor 0.940 0.962 +

Rheum 0 619 0 666 +

Number of ties = 2

Moreover, one tie is added in the
i f iRheum 0.619 0.666 +

Voting 0.972 0.981 +

Wine 0.957 0.978 +

wins count. No. of wins = 11.
68



Basic Non-Parametric Tests and Case Studies
For Pairwise Comparisons

Example of Sign Test

For Pairwise Comparisons

Example of Sign Test

According to the previous Table this difference is significant with α =According to the previous Table, this difference is significant with α  
0.05.

This test does not assume any commensurability of scores or differences nor 
does it assume normal distributions and is thus applicable to any data. On 
the other hand, it is much weaker than the Wilcoxon signed-ranks test 
because it will not reject the null-hypothesis unless one algorithm almostbecause it will not reject the null hypothesis unless one algorithm almost 
always outperforms the other.
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Exercise of Sign Test

For Pairwise Comparisons

Exercise of Sign Test
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Wilcoxon Signed-Ranks Test for Paired Samples

For Pairwise Comparisons

The Wilcoxon Signed-Ranks test is used in exactly the same situations 
as the paired t-Test (i.e., where data from two samples are paired).

Wilcoxon Signed Ranks Test for Paired Samples

p ( , p p )

In general, the Test asks:

H Th 2 l f l ti ith thHo: The 2 samples come from populations with the same 
distributions. Or, median of population 1 = median of 
population 2population 2

The test statistic is based on ranks of the differences 
between pairs of data.
NOTE: If you have  5 pairs of data points, the Wilcoxon Signed-
Ranks test can never report a 2-tailed p-value < 0.05
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P d f th Wil Si d R k T t

For Pairwise Comparisons

Procedure for the Wilcoxon Signed-Ranks Test

1. For each pair of data, calculate the difference. Keep track of the p , p
sign (+ve or –ve).

2 Temporarily ignoring the sign of the difference rank the absolute2. Temporarily ignoring the sign of the difference, rank the absolute 
values of the difference. When the differences have the same value, 
assign them the mean of the ranks involved in the tie.

3. Consider the sign of the differences again and ADD up the ranks 
of all the positive differences and all the negative differences          p g
(R+, R-). Ranks of difference equal to 0 are split evenly among the 
sums; if there is an odd number of them, one is ignored. 
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P d f th Wil Si d R k T t

For Pairwise Comparisons

4. Let T be the smaller of the sums of

Procedure for the Wilcoxon Signed-Ranks Test

4. Let T be the smaller of the sums of 
positive and negative differences.  T = 
Min {R+, R-}.
Use an appropriate Statistical Table or 
computer to determine the test statistic, 

i i l i lcritical region or p-values.

5 R j h H if i i  i i l5. Reject the Ho if test statistic  critical 
value, or if p   (alpha).

6. Report Test results. 73
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Example of the Wilcoxon Signed-Ranks Test

For Pairwise Comparisons

Example of the Wilcoxon Signed Ranks Test
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Example of the Wilcoxon Signed-Ranks Test

For Pairwise Comparisons

Example of the Wilcoxon Signed Ranks Test

n = 8

T= 3

= 0.05, dif  = 4
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Example of the Wilcoxon Signed-Ranks Test

For Pairwise Comparisons

Example of the Wilcoxon Signed Ranks Test
dataset C4.5 C4.5m Difference Rank

Adult 0.763 0.768 +0.005 3.5
(Demsar 2006, JMLR)

Breast 0.599 0.591 -0.008 7

Wisconsin 0.954 0.971 +0.017 9

Cmc 0.628 0.661 +0.033 12
R+ = 3.5 + 9 + 12 + 5 + 
6+ 14+ 11 + 13 + 8 + 10 +

Ionosphere 0.882 0.888 +0.006 5

Iris 0.936 0.931 -0.005 3.5

6+ 14+ 11 + 13 + 8 + 10 + 
1.5 = 93

Bupa 0.661 0.668 +0.007 6

Lung 0.583 0.583 0.000 1.5

Lymphograph 0.775 0.838 +0.063 14y p g p

Mushroom 1.000 1.000 0.000 1.5

Tumor 0.940 0.962 +0.022 11

Rh 0 619 0 666 +0 047 13

R- = 7 + 3.5 + 1.5 = 12
Rheum 0.619 0.666 +0.047 13

Voting 0.972 0.981 +0.009 8

Wine 0.957 0.978 +0.021 10
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Example of the Wilcoxon Signed-Ranks Test

For Pairwise Comparisons

Example of the Wilcoxon Signed Ranks Test

R+ = 3 5 + 9 + 12 + 5 +R+ = 3.5 + 9 + 12 + 5 +

6+ 14+ 11 + 13 + 

8 + 10 + 1.5 = 93

R 7 + 3 5 + 1 5 12R- = 7 + 3.5 + 1.5 = 12 

T =  Min {R+ , R- } = 12

= 0.05, N = 14    dif  = 21

We reject the null-hypothesisW j yp
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Example of the Wilcoxon Signed-Ranks Test

For Pairwise Comparisons

Example of the Wilcoxon Signed Ranks Test

Critical values for T 
for N up to 25. 

It T <= dif (table value)It T <=  dif (table-value) 
then Reject the Ho
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For n  30: use T values (and refer to a Table B.12. Critical Values 
of the Wilcoxon T Distribution, Zar,  App 101)

For n > 30: use z-scores (z is distributed approximately normally).    
(and refer to the z-Table, Table B.2. Zar – Proportions of the 
Normal Curve (One-tailed), App 17)

with  = 0.05, the null-hypothesis can be rejected if z is smaller 
than –1.96.
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The Wilcoxon signed ranks test is more sensible than the t-
test. It assumes commensurability of differences, but only
qualitatively: greater differences still count more which isqualitatively: greater differences still count more, which is
probably desired, but the absolute magnitudes are ignored.

From the statistical point of ie the test is safer since it doesFrom the statistical point of view, the test is safer since it does
not assume normal distributions. Also, the outliers
(exceptionally good/bad performances on a few data-(exceptionally good/bad performances on a few data
sets/problems) have less effect on the Wilcoxon than on the t-
test.

The Wilcoxon test assumes continuous differences, therefore
they should not be rounded to one or two decimals, since thisy ,
would decrease the power of the test due to a high number of
ties. 82
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Wilcoxon Signed-Ranks Test in SPSS

Analyze  Nonparametric Tests   2 Related Samples Tests

S l t i ( ) f i bl• Select pair(s) of variables

• Select Wilcoxon
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Wilcoxon Signed-Ranks Test in SPSS

For Pairwise Comparisons

Ranks

0a .00 .00
11b 6.00 66.00

Negative Ranks
Positive Ranks

beta-endorphin
conc. after (pmol/l) -
b d hi

N Mean Rank Sum of RanksOUTPUT
0c

11
Ties
Total

beta-endorphin
conc. before (pmol/l)

beta-endorphin conc. after (pmol/l) < beta-endorphin conc. before (pmol/l)a. 

beta-endorphin conc. after (pmol/l) > beta-endorphin conc. before (pmol/l)b. beta endorphin conc. after (pmol/l)  beta endorphin conc. before (pmol/l)

beta-endorphin conc. before (pmol/l) = beta-endorphin conc. after (pmol/l)c. 

Test Statistics b

b t d hibeta-endorphi
n conc. after

(pmol/l) -
beta-endorphi
n conc. before

-2.934a

.003
Z
Asymp. Sig. (2-tailed)

n conc. before
(pmol/l)

Based on negative ranksa. Based on negative ranks.a. 

Wilcoxon Signed Ranks Testb. 
Conclude: Reject Ho (Wilcoxon Signed-Ranks test, Z = -2.934, p = 0.003, n = 11, 0). 84
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Basic Non-Parametric Tests and Case Studies

 For Pairwise Comparisons
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 For Pairwise Comparisons
 For Multiple Comparisons involving a Control 

MethodMethod
 Data Mining: Neural Networks and Genetic

L iLearning
 Evolutionary Algorithms: CEC’05 Special Session

of Parameter Optimization
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Using Wilcoxon test for comparing multiple

For Multiple Comparisons involving a Control Method

Using Wilcoxon test for comparing multiple
pairs of algorithms:
Wilcoxon’s test performs individual comparisons between two
algorithms (pairwise comparisons). The p-value in a pairwise
comparison is independent from another onecomparison is independent from another one.

If we try to extract a conclusion involving more than one
i i i i Wil ’ l i ill bt ipairwise comparison in a Wilcoxon’s analysis, we will obtain

an accumulated error coming from the combination of
pairwise comparisons.

In statistical terms, we are losing the control on the Family
Wise Error Rate (FWER), defined as the probability of making( ) y g
one or more false discoveries among all the hypotheses when
performing multiple pairwise tests. 86
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When a p-value is considered in a multiple comparison it

For Multiple Comparisons involving a Control Method

When a p-value is considered in a multiple comparison, it
reflects the probability error of a certain comparison, but it does
not take into account the remaining comparisons belonging to
the family.

If one is comparing k algorithms and in each comparison theIf one is comparing k algorithms and in each comparison the
level of significance is α, then in a single comparison the
probability of not making a Type I error is (1 – α), then
the probability of not making a Type I error in the k-1
comparison is (1- α)·(k-1). Then the probability of making one or
more Type I error is 1 - (1- α)·(k-1)more Type I error is 1 (1 α) (k 1).

For instance, if α = 0.05 and k = 10, this is 0.37, which is
th hi hrather high.
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Using Wilcoxon test for comparing multiple

For Multiple Comparisons involving a Control Method

Using Wilcoxon test for comparing multiple
pairs of algorithms:

The true statistical signification for the pairwise
comparison test is given by:
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Using Multiple Comparison Procedures:

For Multiple Comparisons involving a Control Method

Using Multiple Comparison Procedures:

Making pairwise comparisons allows us to conduct this analysis,
but the experiment wise error can not be previously controlled.
Furthermore, a pairwise comparison is not influenced by anyp p y y
external factor, whereas in a multiple comparison, the set of
algorithms chosen can determine the results of the analysis.

M lti l i d d i d f ll i tMultiple comparison procedures are designed for allowing us to
fix the FWER before performing the analysis and for taking into
account all the influences that can exist within the set of results
for each algorithm.
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Multiple Comparison Procedures:

For Multiple Comparisons involving a Control Method

Multiple Comparison Procedures:

Parametric Nonparametric

ANOVA F i d ’  t tANOVA Friedman’s test
Iman-Davenport’s test

Turkey, Dunnet, … Bonferroni-Dunn’s test
Holm’s method
Hochberg’s methodHochberg s method
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Friedman’s test: It is a non parametric equivalent of the test of repeated

For Multiple Comparisons involving a Control Method

Friedman’s test: It is a non-parametric equivalent of the test of repeated-
measures ANOVA. It computes the ranking of the observed results for algorithm
(rj for the algorithm j with k algorithms) for each function/algorithm, assigning to
h b f h h ki 1 d h h ki kthe best of them the ranking 1, and to the worst the ranking k.

Under the null hypothesis, formed from supposing that the results of the
algorithms are equivalent and, therefore, their rankings are also similar, the
Friedman statistic

 2
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is distributed according to k - 1 degrees of freedom, being ,
and N the number of functions/algorithms (N > 10 k > 5)

 j)(


i

j
ij r

N
R 1

and N the number of functions/algorithms. (N > 10, k > 5)
(Table B.1. Critical Values of the Chi-Square Distribution, App. 12, Zar).
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Example of the Friedman Test
For Multiple Comparisons involving a Control Method
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Example of the dataset C4.5 C4.5m C4.5cf C4.5cf,m

Adult 0 763 0 768 0 771 0 798

For Multiple Comparisons involving a Control Method

Friedman Test
Adult 0.763 0.768 0.771 0.798

Breast 0.599 0.591 0.590 0.569

Wisconsin 0.954 0.971 0.968 0.967(Demsar 2006, JMLR)

The results obtained 

Cmc 0.628 0.661 0.654 0.657

Ionosphere 0.882 0.888 0.886 0.898

Iris 0 936 0 931 0 916 0 931

( )

(performances) are arranged by 
a matrix of data with data sets 
in the rows and algorithms in 

Iris 0.936 0.931 0.916 0.931

Bupa 0.661 0.668 0.609 0.685

Lung 0.583 0.583 0.563 0.625

the columns. Lymphography 0.775 0.838 0.866 0.875

Mushroom 1.000 1.000 1.000 1.000

Tumor 0.940 0.962 0.965 0.962
C4.5 with cf parameter is the 
version which optimizes AUC 
considering various levels of

Rheum 0.619 0.666 0.614 0.669

Voting 0.972 0.981 0.975 0.975
considering various levels of 

confidence for pruning a leaf.
Wine 0.957 0.978 0.946 0.970
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Example of the dataset C4.5 C4.5m C4.5cf C4.5cf,m

Adult 4 3 2 1

For Multiple Comparisons involving a Control Method

Friedman Test
Rankings are assigned in 

Adult 4 3 2 1

Breast 1 2 3 4

Wisconsin 4 1 2 3Rankings are assigned in 
increasing order from the best 
to the worst algorithm for each 

dataset/problem

Cmc 4 1 3 2

Ionosphere 4 2 3 1

Iris 1 2 5 4 2 5dataset/problem.

Ties in performance are

Iris 1 2.5 4 2.5

Bupa 3 2 4 1

Lung 2.5 2.5 4 1
Ties in performance are 
computed by averaged 

rankings.

Lymphography 4 3 2 1

Mushroom 2.5 2.5 2.5 2.5

Tumor 4 2.5 1 2.5

The most interesting datum for 

Rheum 3 2 4 1

Voting 4 1 2 3

now is the Average Rank for 
each algorithm.

Wine 3 1 4 2

Average Rank 3.143 2.000 2.893 1.964



Basic Non-Parametric Tests and Case Studies
For Multiple Comparisons involving a Control Method

C4.5 C4.5m C4.5cf C4.5cf,m

A R k 3 143 2 000 2 893 1 964

For Multiple Comparisons involving a Control Method

Friedman’s measure

Average Rank 3.143 2.000 2.893 1.964

Friedman s measure

)1(12 2
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Observing the critical value, it can be concluded that it rejects the null hypothesis
95



Basic Non-Parametric Tests and Case Studies
For Multiple Comparisons involving a Control MethodFor Multiple Comparisons involving a Control Method

Iman and Davenport’s test: It is a metric derived from the Friedman’s
statistic given that this last metric produces a conservative undesirably
effect. The statistic is:

2)1( F
F

NF 
 2)1( F

F kN
F



and it is distributed according to a F distribution with k – 1 and (k - 1)(N - 1)
degrees of freedom.g

(Table B.4. Critical values of the F Distribution, App. 21, Zar).
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C4.5 C4.5m C4.5cf C4.5cf,m

A R k 3 143 2 000 2 893 1 964

For Multiple Comparisons involving a Control Method

Iman and Davenport’s measure

Average Rank 3.143 2.000 2.893 1.964

Iman and Davenport s measure

69328.9·13)1( 2




 FNF  69.3
28.93·13)1( 2 







F
F kN

F


FF = 3.69, F(3,3x13) = 2.85

Observing the critical value, it can be concluded that it rejects the null hypothesis
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If the null hypothesis is rejected by Friedman or Iman-Davenport
test, we can proceed with a post-hoc test:

The most frequent case is when we want to compare one
l ith (th l) ith t f l ith Thi t falgorithm (the proposal) with a set of algorithm. This type of

comparison involves a CONTROL method, and it is usually
denoted as a 1 x n comparison.p

The simplest procedure in 1 x n comparisons is the BonferroniThe simplest procedure in 1 x n comparisons is the Bonferroni-
Dunn test. It adjusts the global level of significance by dividing it
by (k – 1) in all cases, being k the number og algorithms.
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The performance of two algorithms is significantly different if the
corresponding average ranks differ by at least the critical difference:

If the CD is greater than the values presented in the following Table, we
can conclude that both algorithms have differences in performance:can conclude that both algorithms have differences in performance:
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Considering the example of the four versions of C4.5, we have (C4.5cf,m
as control):

C4.5 C4.5m C4.5cf C4.5cf,m

54

Average Rank 3.143 2.000 2.893 1.964

16.1
14·6
5·4394.205.0 CD

038.1
14·6
5·4128.21.0 CD

With α=0.05, C4.5cf,m performs better than C4.5.

146

With α=0.1, C4.5cf,m also performs better than C4.5.
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However, a more general way to obtain the differences among
algorithms is to obtain a statistic that follow a normal distribution. The
test statistics for comparing the i-th algorithm with the j-th algorithm is
computed by:

The z value is used to find the corresponding probability from the table
of normal distribution, which is then compared with an appropriate α.

In Bonferroni-Dunn, α is always divided by (k - 1) independently of the
i f ll i ti b h i F thicomparison, following a very conservative behavior. For this reason

other procedures such as Holm’s or Hochberg’s are preferred. 101
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Holm’s method: We dispose of a test that sequentially checks the hypothesis

For Multiple Comparisons involving a Control Method

Holm s method: We dispose of a test that sequentially checks the hypothesis
ordered according to their significance. We will denote the p values ordered: p1
 p2 …  pk-1 .

Holm’s method compares each pi with /(k-i) starting from the most significant p
value. If p1 Is below than /(k-1), the corresponding hypothesis is rejected and it
l i h /(k 2) If h d h h i i j dleaves us to compare p2 with /(k-2). If the second hypothesis is rejected, we
continue with the process. As soon as a certain hypothesis can not be rejected, all
the remaining hypothesis are maintained as accepted.

The value of z is used for finding the corresponding probability from the table of theg p g p y
nomal distribution, which is compared with the corresponding value of  .
(Table B.2. Zar – Proportions of the Normal Curve (One-tailed), App 17)
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For Multiple Comparisons involving a Control Method

Holm’s method: SE = (4.5/6.14) = 0.488.

p-values are

0.016 (C4.5+m+cf)

0.019 (C4.5+m)

0.607 (C4.5+cf)

The first one is rejected  (0.016 < 0.017)

h d i j d (0 019 0 02 )The second one is rejected  (0.019 < 0.025), 

The third one can not be rejected (0.607 > 0.05) 103



Basic Non-Parametric Tests and Case Studies
For Multiple Comparisons involving a Control Method

Hochberg’s method: It is a step up procedure that works in the opposite direction

For Multiple Comparisons involving a Control Method

Hochberg’s method: It is a step-up procedure that works in the opposite direction
to Holm’s method, comparing the largest p value with , the next largest with /2
and so forth until it encounters a hypothesis it can reject. All hypotheses with

ll l h j d llsmaller p values are then rejected as well.

Hochberg’s method is more powerful than Holm’s although it may under some
circumstances exceed the family-wise error.
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Basic Non-Parametric Tests and Case Studies

 For Pairwise Comparisons

s c No e c es s d C se S ud es

 For Pairwise Comparisons
 For Multiple Comparisons involving a Control 

MethodMethod
 Data Mining: Neural Networks and Genetic

L iLearning
 Evolutionary Algorithms: CEC’05 Special Session

of Parameter Optimization
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Wilcoxon Signed-Ranks Test for Paired Samples

Data Mining: Neural Networks and Genetic Learning

Wilcoxon's test applied over the all possible comparisons 
between the algorithms in accuracyg y

We stress in We stress in 
bold the 
winner algorithm 
in each row 
when

the p-value 
associated is 
b l  0 05below 0.05
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Wilcoxon Signed-Ranks Test for Paired Samples

Data Mining: Neural Networks and Genetic Learning

g p

Wilcoxon's test applied over the all possible comparisons 
between the algorithms in kappa ratebetween the algorithms in kappa rate

We stress in We stress in 
bold the 
winner algorithm 
in each row 
when

the p-value 
associated is 
b l  0 05below 0.05
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Results of applying Friedman’s and Iman-Davenport’s test with level 
of significance α ≤ 0.05 to the GBMLs

 The statistics of Friedman and Iman-Davenport are clearly 
greater than their associated critical values
 There are significant differences among the observed 

results
 Next step: apply post-hoc test and find what algorithms Next step: apply post-hoc test and find what algorithms

partners' average results are dissimilar
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110



Statistical Analysis of Experiments in Data Mining and 
Computational IntelligenceComputational Intelligence 

Basic Non-Parametric Tests and Case Studies

 For Pairwise Comparisons
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 For Pairwise Comparisons
 For Multiple Comparisons involving a Control 

MethodMethod
 Data Mining: Neural Networks and Genetic

L iLearning
 Evolutionary Algorithms: CEC’05 Special Session

of Parameter Optimization
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G-CMAES versus the remaining algorithms. 
The critical values are: 68, 76, 89 and 100 (0.01, 0.02, 0.05, 0.1) 112
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Evolutionary Algorithms: CEC’2005 Special Session of Parameter OptimizationEvolutionary Algorithms: CEC 2005 Special Session of Parameter Optimization

G-CMAES versus the remaining algorithms. 
P-value obtained through normal approximation 113
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Example on the use of Wilcoxon’s test combined for

Evolutionary Algorithms: CEC 2005 Special Session of Parameter Optimization

Example on the use of Wilcoxon s test combined for 
multiple comparisons

4670)00001)(25901)(00301)(00401)(00101(
)357.01)(009.01)(000.01)(001.01)(001.01(1 p

467.0)000.01)(259.01)(003.01)(004.01)(001.01( 
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115



Basic Non-Parametric Tests and Case Studies
Evolutionary Algorithms: CEC’2005 Special Session of Parameter OptimizationEvolutionary Algorithms: CEC 2005 Special Session of Parameter Optimization

Ranking: f1-f25

Ranking: f15-f25 116
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OUTLINE

 Introduction to Inferential Statistics

OU N

 Conditions for the safe use of parametric tests

 Basic non-parametric tests and case studies

 Advanced non-parametric tests and case studiesAdvanced non parametric tests and case studies

 Lessons Learned

 Books of Interest and References

S ft Software
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 Advanced non-parametric tests and case studies:

 For Multiple Comparisons involving control method

OU N ( )

 For Multiple Comparisons involving control method
 Post-hoc Procedures
 Adjusted p-valuesj p
 Detecting all pairwise differences in a multiple comparison

 Lessons Learned
 Considerations on the use of nonparametric tests
 Recommendations on the use of nonparametric tests
 Frequent Questions Frequent Questions

 Books of Interest and References
 Software Software
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 For Multiple Comparisons involving a control 
method

 Post hoc Procedures Post-hoc Procedures
 Adjusted p-values
 Detecting all pairwise differences in a multiple

comparison
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General Case Study used:

For Multiple Comparisons involving a Control Method

General Case Study used:

 24 data sets from UCI and KEEL data-set

 Classifiers (from KEEL, standard parameters values):
 PDFC
 NNEP
 IS-CHC + 1NN
 FH-GBML

 3 runs of 10fcv 124
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Multiple 

For Multiple Comparisons involving a Control Method

Comparison non-
parametric 

procedures map.

In white are depicted the
basic non-parametric
t t h itest, whereas in grey are
depicted more advanced
tests which will be
presented next.

125
Source:  S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for 
multiple comparisons in the design of experiments in computational intelligence and data 
mining: Experimental Analysis of Power. Information Sciences 180 (2010) 2044–2064.
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Dataset

For Multiple Comparisons involving a Control Method

Friedman

dand

Iman-
Davenport

(only showed for 
comparison 

i thipurposes in this 
case study)

Average ranking
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Friedman’s measure: 16.255 Iman-Davenport’s test:
FF = 6 691 p-value for F(3 3*23) =
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M lti l i t t Th f ll i d ll t ll f th

For Multiple Comparisons involving a Control Method

Multiple sign test: The following procedure, allows us to compare all of the
other algorithms with a control labeled algorithm. The technique, an extension of
the familiar sign test, carries out the following steps:

1. Represent by xi1 and xij the performances of the control and the jth classifier
in the ith data set.

2. Compute the signed differences dij = xij xi1. In other words, pair each
performance with the control and, in each data set, subtract the control
performance from the jth classifierperformance from the jth classifier.

3. Let rj equal the number of differences, dij, that have the less frequently
occurring sign (either positive or negative) within a pairing of an algorithm
with the control.
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4 Let M be the median response of a sample of results of the control method

For Multiple Comparisons involving a Control Method

4. Let M1 be the median response of a sample of results of the control method
and Mj be the median response of a sample of results of the jth algorithm.
Apply one of the following decision rules:

• For testing H0: Mj ≥ M1 against H1 : Mj < M1, reject H0 if the number of
plus signs is less than or equal to the critical value of Rj appearing in
Table A 1 in Appendix A (Ref below) for k - 1 (number of algorithmsTable A.1 in Appendix A (Ref. below) for k - 1 (number of algorithms
excluding control), n and the chosen experimentwise error rate.

• For testing H0: Mj ≤ M1 against H1 : Mj Z M1, reject H0 if the number ofg 0 j 1 g 1 j 1, j 0
minus signs is less than or equal to the critical value of Rj appearing in
Table A.1 in Appendix A for k - 1, n and the chosen experimentwise
error rateerror rate.

Source: S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence and data mining: 
Experimental Analysis of Power. Information Sciences 180 (2010) 2044–2064. 
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Dataset

For Multiple Comparisons involving a Control Method

Multiple Sign 

T tTest

Number of minus
Number of plus

rj
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Ali d R k F i d ’ t t l f l ti i t d th

For Multiple Comparisons involving a Control Method

Aligned Ranks Friedman’s test: a value of location is computed as the
average performance achieved by all algorithms in each data set. Then, it
calculates the difference between the performance obtained by an algorithm and
the value of location. This step is repeated for algorithms and data sets. The
resulting differences, called aligned observations, which keep their identities with
respect to the data set and the combination of algorithms to which they belong,p g y g,
are then ranked from 1 to kn relative to each other. Then, the ranking scheme is
the same as that employed by a multiple comparison procedure which employs
independent samples; such as the Kruskal–Wallis test The ranks assigned to theindependent samples; such as the Kruskal Wallis test. The ranks assigned to the
aligned observations are called aligned ranks.
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Dataset

For Multiple Comparisons involving a Control Method

Friedman 
Aligned g
Ranks

average ranking
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Aligned Ranks Friedman’s measure: 18.837

The p-value of Chi2 with 3 degrees of freedom is 0.000296.
Hypothesis rejected
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Q d t t Th F i d t t id ll d t t t b l i t f

For Multiple Comparisons involving a Control Method

Quade test: The Friedman test considers all data sets to be equal in terms of
importance. An alternative to this could take into account the fact that some data
sets are more difficult or the differences registered on the run of various
algorithms over them are larger. The rankings computed on each data set could be
scaled depending on the differences observed in the algorithms’performances.

Th d t t fi di th k i th th F i d t t dThe procedure starts finding the ranks in the same way as the Friedman test does.
The next step requires the original values of performance of the classifiers. Ranks
are assigned to the data sets themselves according to the size of the sample

range in each data set. The sample range within data set i is the difference
between the largest and the smallest observations within that data set:
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Quade
Sample

For Multiple Comparisons involving a Control Method

Dataset
Sample 
Ranking
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Quade measure: 21.967

For Multiple Comparisons involving a Control Method

With four algorithms and 24 data sets, T3 is distributed according to the F
distribution with 4-1=3 and (4-1)*(24-1)=69 degrees of freedom. The p-value
computed by using the F distribution is 0.000000000429, so the null hypothesis
is rejected at a high level of significance.j g g
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C t t E ti ti b d di U i th d t lti f

For Multiple Comparisons involving a Control Method

Contrast Estimation based on medians: Using the data resulting from
the run of various classifiers over multiple data sets in an experiment, the
researcher could be interested in the estimation of the difference between two
classifiers’ performance.

A procedure for this purpose assumes that the expected differences between
performances of algorithms are the same across data sets. We assume that the
performance is reflected by the magnitudes of the differences between theperformance is reflected by the magnitudes of the differences between the
performances of the algorithms.

Consequently, we are interested in estimating the contrast between medians of
samples of results considering all pairwise comparisons. It obtains a quantitative
diff t d th h di b t t l ith lti l d tdifference computed through medians between two algorithms over multiple data
sets, but the value obtained will change when using other data sets in the
experiment.
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Contrast Estimation Based on Means procedure:

For Multiple Comparisons involving a Control Method

Contrast Estimation Based on Means procedure:

1. Compute the difference between every pair of k algorithms in each of the n data set:
Di( ) = Xi – Xi , only when u < v.Di(uv)  Xiu Xiv, only when u  v.

2. Compute the median of each set of differences Zuv. It is the unadjusted estimator of 
Mu – Mv. Sice Zvu = Zuv, we have only to calculate the cases u < v. Zuu = 0.u v vu uv, y uu

3. Compute the mean of each set of unadjusted medians having the same first subscript
mu:u

ku
k

Z
m

k

j uj
u ,...,1,1 
 

4. The estimator of Mu – Mv is mu - mv

k
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Dataset

For Multiple Comparisons involving a Control Method

Contrast 
Estimation 

based

on Medianson Medians
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Our estimate is m1 – m2:

For Multiple Comparisons involving a Control Method

Our estimate is m1 m2:

0.023

C E i i b d di ll hContrast Estimation based on medians among all the 
algorithms of the case study presented

PDFC NNEP IS-CHC+1NN FH-GBML
PDFC 0.000 0.023 0.020 0.060
NNEP -0.023 0.000 -0.003 0.037

IS-CHC+1NN -0.020 0.003 0.000 0.040
FH GBML 0 060 0 037 0 040 0 000FH-GBML -0.060 -0.037 -0.040 0.000
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Post hoc Procedures

Multiple Comparison tests are focused on the comparison between a control

Post-hoc Procedures

Multiple Comparison tests are focused on the comparison between a control
method, which is usually the proposed method, and a set of algorithms used in the
empirical study. This set of comparisons is associated with a set or family of
h h ll f hi h l d h l h d A f h hhypotheses, all of which are related to the control method. Any of the post hoc tests
is suitable for application to nonparametric tests working over a family of
hypotheses. The test statistic for comparing the ith algorithm and jth algorithm
depends on the main nonparametric procedure used:

• Friedman

• Friedman Aligned Ranks

•Quade
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REMEMBER

Post-hoc Procedures

REMEMBER: Three classical post-hoc procedures have been used in mutiple
comparisons tests:

i• Bonferroni-Dunn: controls the family-wise error rate by dividing a by the
number of comparisons made (k−1).

• Holm: Step-down procedure that sequentially test the hypotheses ordered by
their significance. We will denote the ordered p values by p1, p2, ..., so that p1 ≤ p2 ≤
. . . ≤ pk−1. It starts with the most significant p value. If p1 is below α/(k−1), thepk 1 g p p1 ( ),
corresponding hypothesis is rejected and we are allowed to compare p2 with α
/(k−2). If the second hypothesis is rejected, the test proceeds with the third, and so
onon.

• Hochberg: step-up procedure that works in the opposite direction, comparing
the largest p value with α, the next largest with α /2 and so forth until it encounters athe largest p value with α, the next largest with α /2 and so forth until it encounters a
hypothesis it can reject
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H l i li t d t t d d t d Fi t d t fi d

Post-hoc Procedures

Hommel: is more complicated to compute and understand. First, we need to find 
the largest j for which pn-j+k > kα/j for all k = 1, . . . , j. If no such j exists, we can 
reject all hypotheses, otherwise we reject all for which pi ≤ α/j.

Holland: it also adjusts the value of a in a step-down manner, as Holm’s method 
does. It rejects H1 to Hi-1 if i is the smallest integer so that pi > 1 – (1 – α)k - i.j 1 i 1 g pi ( )
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Fi it l dj t th l f i t d H l ’

Post-hoc Procedures

Finner: it also adjusts the value of a in a step-down manner, as Holm’s or 
Holland’s method do. It rejects H1 to Hi-1 if i is the smallest integer so that pi > 1 –
(1 – α)(k – 1) / i .

Rom: Rom developed a modification to Hochberg’s procedure to increase itsRom: Rom developed a modification to Hochberg s procedure to increase its 
power. It works in exactly the same way as the Hochberg procedure, except that the 
a values are computed through the expression
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• Li - 2 steps rejection procedure:

• Step 1: Reject all Hi if pk-1 ≤ α. Otherwise, accept the hypothesis associated to pk-1
and got to step 2.

• Step 2: Reject any remaining Hi with pi ≤(1-pk-1)/(1-α)α
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A set of post hoc procedures:

Post-hoc Procedures

A set of post-hoc procedures:

• one-step:
B f i D• Bonferroni-Dunn

• step-down:
• Holm They are more powerful• Holland
• Finner

• step-up:

They are more powerful
according this direction

p p
• Hochberg
• Hommel
• RomRom

• two-step:
• Li

Source: S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence and data mining: 
Experimental Analysis of Power. Information Sciences 180 (2010) 2044–2064. 153
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 Post hoc Procedures Post-hoc Procedures
 Adjusted p-values
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In statistical hypothesis testing the p-value is the probability of

Adjusted P-Values

In statistical hypothesis testing, the p value is the probability of
obtaining a result at least as extreme as the one that was actually
observed, assuming that the null hypothesis is true.

The smallest level of significance that results in the rejection of
the null hypothesis, the p-value, is a useful and interestinge u ypo es s, e p a ue, s a use u a d e es g
datum for many consumers of statistical analysis.

A p al e pro ides information abo t hether a statisticalA p-value provides information about whether a statistical
hypothesis test is significant or not, and it also indicates
something about ”how significant” the result is: The smaller theg g
p-value, the stronger the evidence against the null hypothesis.
Most important, it does this without committing to a particular
level of significancelevel of significance.
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One way to solve this problem is to report adjusted p-values

Adjusted P-Values

One way to solve this problem is to report adjusted p-values
(APVs) which take into account that multiple tests are
conducted.

An APV can be compared directly with any chosen significance
l llevel α.

We recommend the use of APVs due to the fact that theyWe recommend the use of APVs due to the fact that they
provide more information in a statistical analysis.
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APVs for each post-hoc procedure:
• one-step:

B f i D• Bonferroni-Dunn
• step-down:

• Holm
• Holland
• Finner

• step-up:p p
• Hochberg
• Hommel (very difficult to compute, next slide)
• RomRom

• two-step:
• Li 157
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APVs in CEC’2005 Case Study

Adjusted P-Values

APVs in CEC 2005 Case Study

 In practice  Hochberg's method is more powerful than Holm's  In practice, Hochberg s method is more powerful than Holm s 
one (but this difference is rather small), in this  the results are 
in favour of Hochberg’s method. 
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APVs in GBMLs Case Study

Adjusted P-Values

APVs in GBMLs Case Study
Adjusted p-
values for the values for the 
comparison of 
the control 
algorithm in algorithm in 
each measure 
with the 
remaining 

If th  dj t d f  h th d i  l  th  th  d i d l l f fid  

remaining 
algorithms

• If the adjusted p for each method is lower than the desired level of confidence α
(0.05 in our case), the algorithms are worse from bottom to top (stress in bold
for 0.05)

• In practice, Hochberg's method is more powerful than Holm's one (but this 
difference is rather small), in this  our study the results are the same. 160
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APVs in ANNs Case Study

Adjusted P-Values

APVs in ANNs Case Study

161



Advanced Non-Parametric Tests and Case Studies
Adjusted P Values

APVs for all post-hoc procedures in 

Adjusted P-Values

APVs for all post-hoc procedures in 
Friedman PDFC is the control
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APVs for all post-hoc procedures in 

Adjusted P-Values

APVs for all post-hoc procedures in 
Friedman Aligned Ranks PDFC is the control
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APVs for all post-hoc procedures in Quade

Adjusted P-Values

APVs for all post-hoc procedures in Quade
PDFC is the control
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Detecting all pairwise differences in a

Detecting all Pairwise differences in a Multiple Comparison

Detecting all pairwise differences in a
multiple comparison:

Until now, we have studied the techniques for multiple
comparison using a control method. But, under somep g ,
circumstances, it would be interesting to conduct a test over
all possible comparisons involved in the experimental study

It is the usual case in review papers. In these cases, the
repetition of comparisons choosing different control
classifiers may lose the control of the family wise errorclassifiers may lose the control of the family-wise error.

The post-hoc procedures need to control the FWER under more
t i ti ti b th f il f h th irestrictive corrections because the family of hypotheses is

formed now for k(k-1)/2 comparisons instead of (k-1). 166
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Remember (Friedman):

Detecting all Pairwise differences in a Multiple Comparison

Remember (Friedman):

A set of pairwise comparisons can be associated with a set orA set of pairwise comparisons can be associated with a set or
family of hypotheses. Any of the post-hoc tests which can be
applied to non-parametric tests work over a family of
hypotheseshypotheses.

The test statistics for comparing the i-th and j-th classifier is

The z value is used to find the corresponding probability (p-value)
from the table of normal distribution, which is then compared with an
appropriate level of significance a (Table A1 in Sheskin, 2003)
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REMEMBER

Detecting all Pairwise differences in a Multiple Comparison

REMEMBER: Two classical post-hoc procedures have been used in mutiple
comparisons tests and also valid in n x n comparisons:

i i i i• Bonferroni-Dunn (Nemenyi in n x n comparisons): controls the
family-wise error rate by dividing a by the number of comparisons made m =
k(k−1)/2.( )

• Holm: Step-down procedure that sequentially test the hypotheses ordered by
their significance. We will denote the ordered p values by p1, p2, ..., so that p1 ≤ p2 ≤g p y p1, p2, , p1 p2
. . . ≤ pk−1. It starts with the most significant p value. If p1 is below α/(m−1), the
corresponding hypothesis is rejected and we are allowed to compare p2 with α
/(m−2) If the second hypothesis is rejected, the test proceeds with the third, and so/(m 2). If the second hypothesis is rejected, the test proceeds with the third, and so
on.

• Hochberg, Hommel, Rom, Finner are also valid….
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Logically Related Hypotheses:

Detecting all Pairwise differences in a Multiple Comparison

Logically Related Hypotheses:

The hypotheses being tested belonging to a family of allThe hypotheses being tested belonging to a family of all
pairwise comparisons are logically interrelated so that not all
combinations of true and false hypotheses are possible.

As a simple example of such a situation suppose that we
want to test the three hypotheses of pairwise equality
associated with the pairwise comparisons of three classifiers
Ci; i = 1,2,3. It is easily seen from the relations among the
hypotheses that if any one of them is false at least one otherhypotheses that if any one of them is false, at least one other
must be false. For example, if C1 is different than C2, then it
is not possible that C1 has the same performance than C3
and C2 has the same performance than C3. C3 must be
different than C1 or C2 or both. 169
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Sh ff ’ d f ll i H l ’ t d th d t t j i t d

Detecting all Pairwise differences in a Multiple Comparison

Shaffer’s procedure: following Holm’s step down method, at stage j, instead
of rejecting Hi if pi ≤ α / (m-i+1), reject Hi if pi ≤ α / ti, where ti is the maximum
number of hypotheses which can be true given that any (i - 1) hypotheses are false.

It is a static procedure, that is, t1, …, tm are fully determined for the given
hypotheses H1, …, Hm, independent of the observed p-values. The possible numbers

f t h th d th th l f t b bt i d f th iof true hypotheses, and thus the values of ti can be obtained from the recursive
formula

where S(k) is the set of possible numbers of true hypotheses with k classifiers being
compared, k ≥ 2, and S(0) = S(1) = {0}.p , ≥ , ( ) ( ) { }
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Bergmann-Hommel’s procedure: Reject all Hj with j not in A, where the 
acceptance set

is the index set of null hypotheses which are retained.

For this procedure, one has to check for each subset I of {1,…,m} if I is exhaustive, 
hi h l d t i t i t ti D t thi f t ill bt i t dwhich leads to intensive computation. Due to this fact, we will obtain a set, named 

E, which will contain all the possible exhaustive sets of hypotheses for a certain 
comparison.  Once the E set is obtained, the hypotheses that do not belong to the A 
set are rejected.
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Case Study used:

Detecting all Pairwise differences in a Multiple Comparison

Case Study used:

 30 data sets from UCI and KEEL data-set
 Classifiers (from KEEL, standard parameters values):( p )
 C4.5
 1NN
 Naïve Bayes
 Kernel
 CN2

 Rankings computed by Friedman test Rankings computed by Friedman test
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C4.5 1NN NaiveB Kernel CN2

Detecting all Pairwise differences in a Multiple Comparison

Average Rank 2.100 3.250 2.200 4.333 3.117
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Case Study used:

Detecting all Pairwise differences in a Multiple Comparison

Case Study used:

 Nemenyi’s test rejects the hypotheses [1–4] since the
corresponding p-values are smaller than the adjusted α’s.
 Holm’s procedure rejects the hypotheses [1–5].
 Shaffer’s static procedure rejects the hypotheses [1–6].
 Bergmann-Hommel’s dynamic procedure first obtains the
exhaustive index set of hypotheses. It obtains 51 index sets.

h i h i lid h i d iWe can see them in the previous slide. From the index sets, it
computes the A set. It rejects all hypotheses Hj with j not in A,
so it rejects the hypotheses [1 8]so it rejects the hypotheses [1–8].
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APVs for each post-hoc procedure:
• one-step:

N i• Nemenyi

• step-down:
• Holm

• Shaffer

• Bergmann-Hommel
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Lessons Learned
Considerations on the Use of Non Parametric TestsConsiderations on the Use of Non-Parametric Tests

On the use of non-parametric tests:

Th d f i t i t t i th t thThe need of using non-parametric tests given that the
necessary conditions for using parametric tests are not

ifi dverified.
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Wilcoxon’s test

Considerations on the Use of Non-Parametric Tests

 Wilcoxon’s test computes a ranking based on differences
b t f ti i d d tl h F i d d d i tibetween functions independently, whereas Friedman and derivative
procedures compute the ranking between algorithms.

 Wilcoxon’s test is highly influenced by the number of case of
study (functions, data sets …). The N value determines the critical
values to search in the statistical table.

It is highly influenced by outliers when N is below or equal to 11.It is highly influenced by outliers when N is below or equal to 11.

183



Lessons Learned
Considerations on the Use of Non Parametric Tests

Multiple comparison (1)

Considerations on the Use of Non-Parametric Tests

 A multiple comparison must be carried out first by using a
statistical method for testing the differences among the related
samples means. Then to use a post-hoc statistical procedures.

 Holm’s procedure is a very good test. Holm s procedure is a very good test.

Hochberg’s method can rejects more hypothesis than Holm’s one.
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Considerations on the Use of Non Parametric Tests

Multiple comparison (2)

Considerations on the Use of Non-Parametric Tests

An appropriate number of algorithms in contrast with an
appropriate number of case problems are needed to be used in order
to employ each type of test. The number of algorithms used in

lti l i d t b l th th b fmultiple comparisons procedures must be lower than the number of
case problems

 h h i d li d k d h d b Both, the Friedman Aligned Rank test and the Quade test, can be
used under the same circumstances as the Friedman test. The
differences in power between them are unknown but we encouragedifferences in power between them are unknown, but we encourage
the use of these tests when the number of algorithms to be
compared is low.p
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What happens if I use a nonparametric test when the data

Considerations on the Use of Non-Parametric Tests

What happens if I use a nonparametric test when the data
is normal?

 It will work, but a parametric test would be 
more powerful, i.e., give a lower p value.

 If the data is not normal, then the nonparametric 
test is usually more powerfultest is usually more powerful

 Always look at the data first  then decide  Always look at the data first, then decide 
what test to use.  
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Considerations on the Use of Non Parametric TestsConsiderations on the Use of Non-Parametric Tests

C   d  hi h  i h l  i  k   

Advantages of Nonparametric Tests

 Can treat data which are inherently in ranks as 
well as data whose seemingly numerical scores 
have the strength in rankshave the strength in ranks

 Easier to learn and apply than parametric tests
(only one run for all cases of test)(only one run for all cases of test)

If sample sizes as small as N=6 are used there is no alternativeIf sample sizes as small as N=6 are used, there  is no alternative 
to using a nonparametric test
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Lessons Learned
Considerations on the Use of Non Parametric TestsConsiderations on the Use of Non-Parametric Tests

Advantages of Nonparametric Tests

If we have a set of data sets/benchmark functions, we
must apply a parametric test for each data set/benchmarkmust apply a parametric test for each data set/benchmark
function.

We only need to use a non-parametric test forWe only need to use a non-parametric test for
comparing the algorithms on the whole set of
benchmarksbenchmarks.
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Considerations on the Use of Non Parametric Tests

D i f E i t i

Considerations on the Use of Non-Parametric Tests

Design of  Experiments in 
Data Mining/Computational  Intelligence

They are not the objective of our talk, but they are twoThey are not the objective of our talk, but they are two
additional important questions:

 Benchmark functions/data sets … are very important.

 To compare with the state of the art is a necessity. To compare with the state of the art is a necessity.
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Lessons Learned
Recommendations on the Use of Non Parametric Tests

Wilcoxon’s test

Recommendations on the Use of Non-Parametric Tests

 The influence of the number of case problems used is more
ti bl i lti l i d th i Wil ’noticeable in multiple comparisons procedures than in Wilcoxon’s

test.

 It is highly influenced by outliers when N is below or equal to
11.
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Multiple comparison with a control (1)

Recommendations on the Use of Non-Parametric Tests

 Holm’s procedure can always be considered better than
Bonferroni-Dunn’s one, because it appropriately controls the
FWER and it is more powerful than the Bonferroni-Dunn’s. We
t l d th f H l ’ th d i istrongly recommend the use of Holm’s method in a rigorous

comparison.

 Hochberg’s procedure is more powerful than Holm’s. The
differences reported between it and Holm’s procedure are in
practice rather small. We recommend the use of this test together

ith Holm’s methodwith Holm’s method
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Recommendations on the Use of Non Parametric Tests

Multiple comparison with a control (2)

Recommendations on the Use of Non-Parametric Tests

 Holm, Hochberg, Finner and Li are the more recommended
h b d d h i d ff b i li ipost-hoc test to be used due to their trade-off between simplicity

and power.

 The power of the Li test is highly influenced by the first p-value
of the family and when it is lower than 0.5, the test will perform
very wellvery well.

 The choice of any of the statistical procedures for conducting an
i l l i h ld b j ifi d b h h Thexperimental analysis should be justified by the researcher. The use

of the most powerful procedures does not imply that the results
obtained by his/her proposal will be betterobtained by his/her proposal will be better.
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Recommendations on the Use of Non Parametric Tests

Multiple comparison with a control (3)

Recommendations on the Use of Non-Parametric Tests

An alternative to directly performing a comparison between a
l l i h d f l i h i h l i l Sicontrol algorithm and a set of algorithms is the Multiple Sign-test.

We recommend its use when the differences reported by the control
algorithm with respect to the rest of methods are very clearalgorithm with respect to the rest of methods are very clear.

 Th C E i i i i i i i d f The Contrast Estimation in nonparametric statistics is used for
computing the real differences between two algorithms,
considering the median measure the most importantconsidering the median measure the most important.
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All pairwise comparisons in multiple comparison

Recommendations on the Use of Non-Parametric Tests

We do not recommend the use of Nemenyi’s test, because it is a
i d d f h b i diffvery conservative procedure and many of the obvious differences

may not be detected.

 Conducting the Shaffer static procedure means a not very
significant increase of the difficulty with respect to the Holm
procedureprocedure.

 Bergmann-Hommel’s procedure is the best performing one, but
i i l h diffi l d d d i llit is also the most difficult to understand and computationally
expensive. We recommend its usage when the situation requires so.
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Lessons Learned
Frequent QuestionsFrequent Questions

 Can we analyze any performance measure?

With non-parametric statistic, any unitary performance measure
(associated to an only algorithm) with a pre-defined range of output
can be anal ed This range co ld be nlimited allo ing s tocan be analyzed. This range could be unlimited, allowing us to
analyze time resources as example.
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Lessons Learned
Frequent QuestionsFrequent Questions

 Can we compare deterministic algorithms with stochastic ones?

 They allow us to compare both types of algorithms because they
can be applied in multi-domain comparisons, where the sample of
res lts is composed b a res lt that relates an algorithm and aresults is composed by a result that relates an algorithm and a
domain of aplication (problem, function, data-set, …)
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Lessons Learned
Frequent QuestionsFrequent Questions

 How the average results should be obtained from each
algorithm?

 This question does not concern to the use of non-parametric
statistics, due to the fact that these tests require a result for each
pair algorithm domain The obtaining of s ch res lt m st bepair algorithm-domain. The obtaining of such result must be
according to a standard procedure followed by all the algorithms in
the comparison, such the case of validation techniques. Averagethe comparison, such the case of validation techniques. Average
results from various runs must be used for stochastic algorithms.
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Lessons Learned
Frequent QuestionsFrequent Questions

What is the relationship between the number of algorithms and
datasets/problems to do a correct statistical analysis?

 In multiple comparisons, the number of problems (data-sets)
must be greater than the double of algorithms. With lesser data-sets,
it is highl probable to not reject an n ll h photesisit is highly probable to not reject any null hyphotesis.

200



Lessons Learned
Frequent QuestionsFrequent Questions

 Is there a maximum number of datasets/problems to be used?

 There not exists a theoretical threshold, although if the number
of problems is very high in relation with the number of algorithms,
the res lts trend to be inacc rate b the central limit theorem Forthe results trend to be inaccurate by the central limit theorem. For
pairwise comparisons, such Wilcoxon’s, a maximum of 30
problems is suggested. In multiple comparisons with a control, weproblems is suggested. In multiple comparisons with a control, we
should indicate as a rule of thumb that n > 8·k could be excessive
and results in no significant comparisons.

201



Lessons Learned
Frequent QuestionsFrequent Questions

 The Wilcoxon test applied several times works better than a
multiple comparison test such as Holm, Is it correct to be used in
these cases?these cases?

 The Wilcoxon test can be applied according a multiple
comparison scheme, but the results obtained cannot be considered
into a famil hich control the FWER Each time a neinto a family which control the FWER. Each time a new
comparison is conducted, the level of significance established a
priori can be overcome. For this reason, the multiple comparisonpriori can be overcome. For this reason, the multiple comparison
tests exist.
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Lessons Learned
Frequent QuestionsFrequent Questions

 Can we use only the rankings obtained to justify the results?

With the rankings values obtained by Friedman and derivatives
we can establish a clear order in the algorithms and even to
meas re the differences among them Ho e er it cannot bemeasure the differences among them. However, it cannot be
concluded that one proposal is better than other until the hypothesis
of comparison associated to them is rejected.of comparison associated to them is rejected.
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Lessons Learned
Frequent QuestionsFrequent Questions

 Is it necessary to check the rejection of the null hypothesis of
Friedman and derivatives before conducting a post-hoc analysis?

 It should be done, although by definition, it can be computed
independently.
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Lessons Learned
Frequent QuestionsFrequent Questions

When the Friedman Aligned and Quade tests are recommendable
instead of classical Friedman?

 The difference of power among the three methods are small and
very dependent of the sample of results to be analyzed. Theoretical
st dies demonstrate that the Aligned Friedman and the Q ade testsstudies demonstrate that the Aligned Friedman and the Quade tests
have better performance when we compare not more than 4
algorithms. The Quade test also assumes some risk because italgorithms. The Quade test also assumes some risk because it
considers that the more relevant problems are also those which
present higher differences in performance among the methods, and
it is not always true.
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Lessons Learned
Frequent QuestionsFrequent Questions

Which post-hoc procedures should be used?

We consider that the Holm test must appear in a comparison,
wheres Bonferroni does not. Hochberg and Li tests could act as a

l t h th i ll t j t h thcomplement when their use allow us to reject more hypotheses
than Holm’s. All rejected hyphotesis by any procedure is correctly
rejected because all procedures perform a strong control of therejected because all procedures perform a strong control of the
FWER.

However some tests such as Li are influenciated by theHowever, some tests, such as Li, are influenciated by the
unadjusted p-values of the initial hypotheses and when the are
lesser than 0.5, is the only case in which the test achieves its best, y
performance of power.
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Learning Research 9 (2008) 2677-2694
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J. Derrac, S. García, D. Molina, F. Herrera.

A Practical Tutorial on the Use of Nonparametric p
Statistical Tests as a Methodology for Comparing 
Evolutionary and Swarm Intelligence Algorithms. 

Swarm and Evolutionary Computation 1:1 (2011) 3-18.
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Demsar J Statistical comparisons of classifiers over multipleDemsar, J.,  Statistical comparisons of classifiers over multiple 
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30. 2006.
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W.W. Daniel. Applied Nonparametric Statistics.
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Software

Software for conducting multiple comparisons tests with a controlg p p
http://sci2s.ugr.es/sicidm/controlTest.zip

Read data of results of k algorithms over N case problems in CSV format. The 
data can correspond to accuracy, AUC or any other performance measure.

Compute the rankings through the Friedman Aligned Ranks and Quade
procedures of k algorithms over N case problems.

Compute the Friedman and Iman-Davenport, Friedman Aligned-Ranks and 
Quade Statistics corresponding to the input data.Q p g p
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S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple 
comparisons in the design of experiments in computational intelligence and data mining: 
Experimental Analysis of Power. Information Sciences 180 (2010) 2044–2064



Software

Software for conducting multiple comparisons tests with a controlg p p
http://sci2s.ugr.es/sicidm/controlTest.zip

Show the tables with the set of hypotheses, unadjusted p-values for each 
comparison and adjusted level of significance for Bonferroni-Dunn, Holm and 
Hochberg Hommel Holland Rom Finner and Li procedures: 1 x n comparisonHochberg, Hommel, Holland, Rom, Finner and Li procedures: 1 x n comparison.

Show the table with adjusted p-values for the procedures 1 x n mentioned in the 
previous itemprevious item.

Give a report detailing the rejected hypotheses considering the levels of 
i ifi 0 05 d 0 10significance α = 0.05 and α = 0.10.
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Software

Software for conducting all pairwise comparisons

http://sci2s.ugr.es/sicidm/multipleTest.zip

g p p

We offer a software developed in JAVA which calculates all the multiple 
comparisons procedures described in this talk and the JMLR paper. 

It allows as input files in CSV format and obtains as output a LaTeX file 
with tabulated information about Friedman, Iman-Davenpor. Bonferroni-
Dunn, Holm, Hochberg, Shaffer and Bergamnn-Hommel tests. It also , , g, g
computes and shows the adjusted p-values.
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Software

http://www.keel.es
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http://www.keel.es
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