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Shopping for PhD Students, Postdocs

= Have you got a Master's Degree in CS or
Mathematics?

= Or do you have a PhD in a field related to machine
learning with a number of first-tier publications?

= Do you feel connected to statistics, programming,
and data?

= Do you feel attracted to research in a highly
relevant area and a growing research community?

= Do you feel like machine learning is a part of you
that has been missing all along?

= Act on these feelings, give me your cv!
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University of Potsdam
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Prerequisites

= Statistics
Random variables, distributions
Bayes' equation
= Linear algebra
Vectors and matrices
Transposed, inverted matrices
Eigenvalues and eigenvectors
= Calculus
Derivative, partial derivative
Gradient
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Respawning Points

= In places, the material may get technically
somewhat involved.

= This icon markes points at which you can catch up,
If you dropped out eatrlier.
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Overview

s Recap: Supervised learning
Empirical inference, graphical models
Logistic regression, linear models

= Learning multiple distinct, related problems
(transfer learning, domain adaptation)

Hierarchical Bayesian Inference
= Learning under covariate shift (differing marginal
Input distribution)
Importance sampling
Direct estimation of important weights

= Importance sampling for domain adaptation
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Classification

= Input: instance xe X
X may be vector space.
Instance Is a set of values for these attributes
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s Qutput: class yeY; finite set .
Class y also called class label.




Classification: Example

= |nput: instance xe X
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X = Set of all combinations of a base set of substances

Attribute Instance X
Contains substance 1? 0
(@)
12 g o
1|5 8 =2
n =
1178
0

Contains substance 6?

= Output:

y e Y ={toxic,ok} @, @

e _
Q Classifier @ o




Classification: Learning Problem

o
=)
7
= Input to learning §
problem: Data T.. o)
< S
Xll | Xln
X=| &
Xml an
© @
y=(% - )

= Training data:
T, ={(X Y1) (X0, Vi) 3




Classification: Learning Problem

= Input to learning = Output: Model
problem: Data T..
b e =@
© = Yy, X =Y
Xq v X
Xm0 X For instance,
if $(x)70>
© © ye(x):{®’ ;thi(r)xis(:o
y=(Y, Ya)' ©

Linear classifier with
= Training data: parameters .

Tn :{(Xy yl)" XX (Xn’ yn)}
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Empirical Inference

= What is the modt likely class y given instance x and
given the training data?

y =argmax, P(y|x,X,y)
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= Need assumptions about data generation process
to solve.
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Classification: Graphical Model

= Graphical model defines
stochastic process

= Modeling assumptions on data
generation process

= First, parameter vector 0 is drawn

= This 6 parameterizes training data
P(y;|x; 6)

= Marginal distribution p(x;) is not
part of the model; instances are

treated as If constant:
discriminative model!
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Example

= Evolution guides physiological
parameters of humans.

s Given these parameters and a
combination of substances,
nature rolles dice to determine
whether an individual survives
Ingestion.

= Survival is governed by p(y; | x,9)
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Empirical Inference

= Inference of the probabillity of y given x and training

data:
0

P(y % X,y) = p(y,0]x,X,y)d®
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Empirical Inference

= Inference of the probabillity of y given x and training

data:
0

P(y|xX,y)= [ p(y,0]|x X,y)do

ﬁjp(ﬂxﬁ)p(mx,y)de W] &

Integration over space of all model Independence assumption;_‘

_|
o
O
Q
n
)]
e}
=
D
—h
@
®

parameters: Bayesian model averaging from graphical model

s No closed-form solution for classification

= Numerical integragtion over space of all model
parameters generally infeasible.
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Empirical Inference

= Inference of the probabillity of y given x and training
data:

P(y [%,X,y) = [ p(y.0]x,X,y)d®
= [P(y[x,0)p(®|X,y)do
~ P(Y|X,0y,) With 0, =arg max, p(o|X,y)
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= Approximation using only the single most
likelyparameter vector: MAP model.
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Empirical Inference

S
§'_
= Inference of the probability of y given x and training ot
data: %
P(@L‘\:X,y) _[ p@,?#l.‘«:, X,%%QE Training data
.. | /
= [P@Ls®) p(¥ X, y) 0%
~ P@5%,,) WIth ™., =argmax, p(6|X,y)
X

= Approximation using only the single most | pogel
likelyparameter vector: MAP model.
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Empirical Inference

= Inference of 0,,,,:
Oy =argmax, p(0|X,y)
P6.X,y)

P(X,y)
=argmax, P(y | X,0)p(0)

= arg max,
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Empirical Inference

= Inference of 0,,,,:
OMAP = arg max, p(ﬂ | X, Y)
P(0,X,y)
P(X,y)
=argmax, P(y | X,0)p(0)

=argmax, [ |._,P(¥; | x;.0)p(6)

= arg max,
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Empirical Inference: Logistic Regression

)
g_
= Inference of 0,,,.: N :
GMAP — arg maxg p(ﬂ | X’ Y) E
= arg max, PO.X,y)
pP(X,y) @

=argmax, [ |._, P(y; | x;,0)N[0,Z](0) :

/

Assuming that P(X;|Y;,0) is
an exponential family leads to
logistic regression

20




Empirical Inference: Logistic Regression

S
g}'.
= Inference of 9,,,,: Oe 2o I
Oy =argmax, p(0|X.,y) G
= arg max, PO.X.y)
p(X,y) @
=argmax, P(y | X,0)p(6) l
=argmax, [ 1, P(y |x.ON[0.Z](0)

=al( rnin0 Zn:(log Zyle(é(xi)TevﬁvY' _¢(Xi)TO¢,yi )_l_%oTZ—lO
=1
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Empirical Inference: Logistic Regression

)
g}'.
= Inference of 0,,,,: Oe 2o I
Oy =argmax, p(0|X.,y) G
= arg max, PO.X.y)
p(X,y) @
=argmax, P(y|X,0)p(6) l
=argmax, [ |., P(y; | x;, 0)N[0,Z](6) —
1

= argmin Z(Iogz e _ (% )T P )+ ZOT >0
m Inference of most likely class:
argmax P(y, | x;,0) =argmax, ¢(x;)' 6”* +b,

—

Linear model in features ¢ .
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Empirical Inference: Logistic Regression

= Inference of 0, 0Oe Te

0, =argmax, PO X,y)

Training data Xi® n
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= arg min Z(IogLx o0 0 _ g(x,)T 0" )+;

m Inference of most likely class:
argmax P(@L#5,0) =argmax, ¢(z) 6" +b,

0'x'0
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Empirical Inference

= Inference of 0,,,,:
Oyap =argmax, p(0|X,y)
P(6,X,y)
p(X,y)
=argmax, P(y | X,0)p(6)

=argmax, [ [, P(¥; 1x,,0)p(6)

= arg max,

13JJayds seiqo|




Empirical Inference: reg. ERM

)
§'.
= Inference of 0,,,,: v §
GMAP = arg max, p(O | X, y) @ E
= arg max, PO, X y)
p(X,y) @
=argmax, P(y| X,0)p(0) X ® o

=argmax, [ .., P(¥; | x;,0)p(6)
=argmin, »_" log P(y, | ;,0)+log p(6)

— N

Substituting log-likelihood for o :
) ... Substituting log-prior for general
general loss function and... . )
reqularizer leads to regularized
empirical risk minimization

25




Empirical Inference: reg. ERM

o
g_
= Inference of ¢ : ot
0" =argmax, p(0|X,y) o}
= arg max, PO.X,y)
p(X.y)

=argmax, P(y| X,0)p(0)

=argmax, [ [, P(¥; | %,,0)p(6)
=argmin, »_" logP(y; | x;,0)+log p(6)
=argming " £(Y;, Yy (X;)) +Q(0)

Regularized empirical risk minimization




Empirical Inference: reg. ERM

S
g_
= Inference of ¢ : ot
0" =argmax, p(0|X,y) 3
= arg max, PO.X,y)
p(X.y)

=argmax, P(y| X,0)p(0)

=argmax, [ [, P(y; |x;,0)p(0)
=argmin, > logP(y, | x;,0)+log p(6)
=argming > £(Y;, Yy (X)) +0"Z7'0




Empirical Inference: reg. ERM

s Alternative rationalization: minimize

risk = expected loss (o)
0° =arg mine_[é(yi,ye(xi))p(xnyi) ,i\

s Distribution p(x;,y;) not known

—
(@)
=3
QD
0]
n
O
=5
)
=
D
=

— approximateby sum over sample @
~argming > " £(Y;, Yy (X)) X )

= Minimization problem is ill-posed; small change Iin
data can lead to large change in parameters.
Smooth by adding Tikhonov regularizer

~argming > L(Y;, Yy (X)) +€(0)

Regularized empirical risk minimization
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Solving the Optimization Problem

= Goal: Minimize function L®@)=>"" ¢(f,(x).y;)+(0)
for given loss function and regularizer

_|
@)
O
Q
n
wn
e
=
D
—h
®

= Numeric solutions:
Gradient descent
Cutting plane method
Interior point method
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Solving the Optimization Problem

= Goal: Minimize function L®@)=>"" ¢(f,(x).y;)+(0)
for given loss function and regularizer
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= Gradient: vector of partial derivatives
= Ascent direction for function L(0). 0

VL(0) =

30




Solving the Optimization Problem

= Goal: Minimize function L®@)=>"" ¢(f,(x).y;)+(0)
for given loss function and regularizer
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s Gradient descent:
= [terative procedure.
= |n each step, move into direction

of steepest descent \
= Descent direction given by VL(6)

. . L(6")
negative gradient.

L(0°%)

00 6° 0
Start
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Solving the Optimization Problem

= Goal: Minimize function L®@)=>"" ¢(f,(x).y;)+(0)
for given loss function and regularizer
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s Gradient descent:

RegERM (Data (X, Y),...(X.,y.)) L(OO) L,
Let 0°=0 andk=0
DO
determine gradient VL(0Y) VL(0)
| | k L(0") =
determine step size «

Let @' =0"-a"VL(0")
Let k=k+1
WHILE 0" -0 > ¢
RETURN 6"

00 6° 0
Start
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Solving the Optimization Problem

= Goal: Minimize function L®@)=>"" ¢(f,(x).y;)+(0)
for given loss function and regularizer

—
(@)
=3
QD
0]
n
O
=5
)
=
D
=

s Gradient descent:
L(6) decreases Iin each step. L)

If L(@) is convex, converges

to global minimum

If loss function and regularizer | L(6")
are convex, L(0) Is convex.

VL(8)

00 6° 0
Start
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Setting the Regularization Parameter

= Optimization criterion has a parameter:

0" =argmin, > £(Y;, Y, (x))+0"=70

—
(@)
=3
QD
0]
n
O
=5
)
=
D
=

_ N 1 T One parameter per
~argming > (Y, Yy (X)) + ~ 99 Y element of 0, even

k If  is diagonal

One parameter A
in total

= TO set parameter, use grid
search and n-fold cross
validation (when training
sample is large, one training-and-test split)
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Empirical Inference

= Graphical model formulates assumptions
that lead to

Oy =argming > " log P(y, | x;,0)+log p(6)
= 0, IS the most likely model given prior
and given training data.

= Substituting log-likelinood for general loss
function and log-prior for general regularizer
leads to regularized empirical risk
minimization
0" =argming > " £(Y;, Yy (X)) +(0)
= Minimum can be found by gradient descent.
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Linear Models

= Hyperplane defined by normal vector and offset:
Hyp ={X| f,(x) = ¢(x) 0 +b =0}
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= Class probability (two
classes, logistic regression):

Py, = +1]%,,0) = — fy(3 >0

(x;)" 07 +b

1+e’
- /9

= Decision function: | /[ TTv-<___
f,(x,) = $(x,)70 +b a
m Classifier:
Yo (%) =sign( f,(x;))

#(X),




Linear Models

S
8;)'3'.
s Hyperplane defined by normal vector and offset: ot
H . ={x|f.(X)=¢(X)'0+b=0 %
oo =X (0 = 4(x) } -
= Class probability (two p(X|y=+10)
classes, logistic regression): x4
1
P(y, =+1|x,,0) = TR
= Decision function:
fo(X;) = @(x;)' 6% +b
Classifier: .
] —/ pC%,

Yo (%) =sign( f,(x;)) p(x|y=-1,0)
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Linear Models

= Hyperplane defined by normal vector and offset:
Hyp ={X| f,(x) = ¢(x) 0 +b =0}

—
(@)
=3
QD
0]
n
O
=5
)
=
D
=

P(X;) =X

= Class probability (two
classes, logistic regression): x

1
P(y; =+1]x;,8) = 14 et 0%

fe (X) =0

s Decision function:
fo(X;) = @(x;)' 6% +b
m Classifier:
Yo (%) =sign( f,(x;)) p(y = +1|x,0)

38




Linear Models

o
s Hyperplane defined by normal vector and offset: ot
_ _ T . 1 %
Hop =1X| Ty(X) = ¢(x) 0 +b =0} woo- . |B
X; ® X,
= Class probability (two p(x|y=+10)
classes, logistic regression): x4
P(y, = +11%,0)= —

14 e¢(xi )T 0% +b

s Decision function:
fo(X;) = @(x;)' 6% +b
m Classifier:
Yo (X;) =sign( 4 (x;))

39




Linear Models

)
s Hyperplane defined by normal vector and offset: §
_ . T _ 1 %
Hyp ={x1 £,(0) = 4(x)"0+b =0} -
X; ®X;

= Class probability (two
classes, logistic regression): x

1
P(y; =+1]x;,8) = 14 et 0%

f,(x) =0

s Decision function:
fo(X;) = @(x;)' 6% +b
m Classifier:
Yo (%) =sign( f,(x;)) p(y = +1|x,0)

40




Linear Models — Multi-Class Case

s Hyperplanes defined by normal vector and offset:
Hony, =0X1 T,(x, %) = 9(x)70°" +b, =0}
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= Class probability

(logistic regression): X 4
$(x)" 07V +b, f \
e g X, y)>0 A%
P(yi|xi,9): Tady' ’ 1 \ o
Z e¢(X) 0”7 +b,. —
y' \\‘~ 9{15’3/1 ‘|
= Decision function: | Tl g
T .Y R A
fo(Xi ¥i) = 4(x;)" 07 + by fy)<0 4 7
m Classifier: N

yﬂ (XI) = arg maxy f(-) (X| ) y) ,’/f




Linear Models

= Decision function of generalized linear classifiers:
fo(X,) = @(x;)'0” +D

= Multi-class case:
fo (X, ¥i) = (%) 0" +b,

s Linear case: #(x)=x

s General feature mapping leads to kernel machines.
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Multiple Kids Experimenting with Drugs

= SO far: only one distribution p(y, | x,9)
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for everyone. aw

= What about different metabolic rates? i
Differing genetic factors? Levels of
tolerance?
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Multiple Kids Experimenting with Drugs

s We could learn distinct models

. ( \
for each user : %
0; =argmax, p(8|X;,y;) r—l—\
* - n;
0, =argmin, D" (Y, Yo (X;)) +€(0) inl
@ N.
——m

= But this would treat individuals as
Independent and disregard much data
(if many previous users died, maybe
this does tell you something)

44
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Forms of Transfer Learning

= Learning under covariate shift

Only marginal distributions p(X; | 7)) and
p(X; | 7. ) differ; conditional P(y; [x; ©)
IS constant.

Goal: minimize risk over test distribution. .

19JJaY9dS seiqoL

= Multi-task learning, domain adaptation

Both, marginal distributions and
conditional distributions P(Y; [X; Oainest)
may differ




Hierarchical Bayesian Inference

= Instead, model a common prior over
Individuals (tasks) p(y; |x;.9;)
= Physiology of everyone has been

produced by the same process of
evolution.

19JJaY9dS seiqoL




Hierarchical Bayesian Inference

= Instead, model a common prior over
Individuals (tasks) p(y; |x;.9;)
= Physiology of everyone has been

produced by the same process of
evolution.

s P(p[E)=N[0,ET(n)
- p(Oj |, X) = N[H,E](Gj)

13JJayds seiqo|

= Substitution: 9=p+v
= p(v; [, X)=N[0,X](0))




Hierarchical Bayesian Inference

= Instead, model a common prior over
Individuals (tasks) p(y; |x;.9;)
= Physiology of everyone has been

produced by the same process of
evolution.

s P(p[E)=N[0,ET(n)
- p(Oj |, X) = N[H,E](Gj)

13JJayds seiqo|

= Substitution: 9=p+v
= p(v; [m,X) = N[0, Z](v;)




Hierarchical Bayesian Inference

s Inference of ¢ :
Oy =argmax,., p(p+v|X,y, XX Oe e

=argmax,,, [ T,P(y; I X, m+W] ], p(v; I Z)p(n| L) @4.2
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: ZLZZHOQ P(yji |in'l’~+")
=argmin,_, |
+>log p(v; | ) +log p(r|X))
. ernzlz:zlf(yjl’ yp+v (XJI))
=argmin - o
+Zjvj2 ViR 2,
-
s For general loss and regularizers: A n, m,

0" =argmin__ lez:“;z(yji, Vi (X)) + 2 Q)+ Q(n)

49




Hierarchical Bayesian Inference

s Parameters = sum of population-specific and

Individual parameters.
= Decision function for individual j:

fo.; 00 =(+v;) $(x)

3
= Optimization criterion (learning): X
@Y Nn.
Individual parameters K;U m 1)

il
@ =argmin, > >0 U@, Y, &)+ D, O8) +Q(9)
/]

/

Individual parameters + population average

population average

50
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Hierarchical Bayesian Inference

<)
= A simple trick for implementing hierarchical Bayes S
= Decision function for individual j: %
ey
fo,; (¥)=(r+v;) #(x)
=p'g(x)+v,'¢(x)5(j =) e

+..+v ' d(x)5(j=m)




Hierarchical Bayesian Inference

= A simple trick for implementing hierarchical Bayes

= Decision function for individual j:
fo, ) =(n+v)) ¢(x)

=p'g(x)+ v, ¢(x)5(j =1)
+..+v ' d(x)0(j=m)

T

vi ) (#(X)o()=1)

Vo | | #(X)o(j=m)
n) (9(x)

[Daume lll et al., Frustratingly easy domain adaptation, 2010]
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Hierarchical Bayesian Inference

= A simple trick for implementing hierarchical Bayes

= Decision function for individual j:

o () =(n+v;) $(x)
=p'¢(x)+ v, $(x)5(j =1)

+..+v ' d(x)0(j=m)

T

vi ) (#(X)o()=1)

Vo | | #(X)o(j=m)
n) (9(x)
7

One shared copy of
the attributes for

entire population

One copy of the
attributes for each
individual (task)

13JJayds seiqo|




Hierarchical Bayesian Inference

= A simple trick for implementing hierarchical Bayes
= Decision function for individual j: '
3

13JJayds seiqo|

T

vi | (¢(X)o()=1)

01090 = Vo | | #(X)3(j =m)

w) oo ) A
0 ®;(x) @

= Learning problem: X
9*:al’gmineZLZL((yji,OT(I)j(xji))+Q(0) ")




Hierarchical Bayesian Inference

= A simple trick for implementing hierarchical Bayes
= Decision function for individual j: '
3

13JJayds seiqo|

T

vi | (¢(X)o()=1)

01090 = Vo | | #(X)3(j =m)

w) oo ) A
0 ®;(x) @

= Learning problem: X

9*:al’gmineZLZL((yji,OT(I)j(xji))+Q(0) —

= Implement using any learning algorithm
by constructing appropriate ®




Hierarchical Bayesian Inference: Exercise

S
%
= Three kids, training set ot
{0 Yir): (i Yio): (s, i), 3 5
{(X20: Y21 ) (X2, ¥20)
{1(Xa1: Ya1) 33 -
= Construct the training set that maps :
this multi-task problem to a reqgular SVM (_74
= Kid 3 takes substances x. Will he live? @
!—Iow do you use the resulting SVM for in;
Inference? A e“n,

= Kid 4 takes substances x. Can we say
anything about whether she will live?




Hierarchical Bayesian Inference

= Graphical model: population-specific and individual
factors determine model parameters.

= When p(u|Z)=N[0,X(n), P(v; |n,X) = N[0, Z](v)),

13JJayds seiqo|

and e=p+v then
_ - 4 )
Ouee =argmin, (373" Iog P(y, |x;,m+v)+ Y log p(v, | Z)-+1og p(u] =) %
s For general loss and regularizers, <
* - m n; (—
0 =argmin,., > " > 7 UV Ve (X)) + D V) + Q) @
= Can be mapped to regular learning « 1
. . le
problem u5|Tng mapping <on,
v, ) (9005(j=1) -

T, 0=y 1 06 =m)

no) \4(x)

0 @;(x)




Importance Sampling for Covariate Shift

Integral over
test distribution

13JJayds seiqo|

s Goal: minimize risk on test distribution 2

e = | [0 TP Y 1% POX; | 7 X, Y,
= Idea. Write as expected value over trainingA Integral over

distribution by using appropriate weights. training

P(X: | Tpy) distribution
e J-I p(X | ttr: 03 1o ) PCY: 1%0) POX; | 7 JAX; Y

= Regularized empirical risk:

Ru = S p(()’(‘ |' Ttest))e(y. f, (x,))+ €(6)

N &
Sum over labeled Neain

training sample




Importance Sampling for Covariate Shift

s Regularized empirical risk:
Iitest = Zint?nﬂ(yu , o (X)) +€2(0)

s Densities p(X; | 7) and p(X; | 7,.) Unknown and high-
dimensional (impractical to estimate).

= Density ratio is just a number for each training data
point (should be easier to estimate).

= Direct estimation of optimal reweighting factors.

_|
o
o
Y
»
n
O
>
@
=®
@

59




Direct Estimation of Importance Weights

= Regularized empirical risk:

R =2n (3D 1 fy(x) +Q(0)
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ptest (XZ) — 6
ptrain (X) — 2
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Direct Estimation of Importance Weights

= Density ratio can be rephrased:
p(Xi |Ttest) — p(Ttrain) p(Xi |Ttest) p(Ttest)
p(xi |Ttrain) p(Ttest) p(xi |Ttrain) p(Ttrain)

p(Ttrain) 1+ p(xi |Ttest) p(Ttest) _1)

p(Ttest) p(Xi | Z-train) p(z-train)
— p(Ttrain) p(Ttrain) p(X | z-train) + p(rtest) p(X | Z-test) _1}

p(Ttest) p(Ttrain) p(X | Ttrain)
— p(Ttrain) p(Ttrain | X) + p(Ttest | X) _]J
p(Ttest) p(Ttrain | Xi)

— p(Ttrain ) { 1 . 1j
p(Ttest) p(Ttrain | Xi )

[Bickel, Briickner, Scheffer, Discriminative learning for differing
training and test distributions, ICML 2007]
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Direct Estimation of Importance Weights

= Density ratio can be rephrased:
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PO | T _ p(rtram[ 1 _1J
p(xi | z-train) p(Ttest) p(z-train | Xi)
1

I

Given x, how likely is x to have
come from training set?

Ratio of training-
to-test set size
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Direct Estimation of Importance Weights

= Density ratio can be estimated directly:
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PO | T _ p(rtram[ 1 _1J
p(xi | z-train) p(Ttest) p(z-train | Xi)

1
1+ e¢(xi )T 9+b

= Train logistic regression model (7 [Xi.9) =
that discriminates training from test data.

Unlabeled test data Training data (labels ignored)
0 : 4y
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Direct Estimation of Importance Weights

. 1 . .
1. Train model P(TtramIXi~9)=—1+e¢<xi)T3 using training data

as positive class and unlabeled test data as
negative class.

Unlabeled test data Training data (labels ignored)
e =G Ly

64
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Direct Estimation of Importance Weights

. 1 . .
1. Train model P(TtramIXi,9)=1+e¢(xi)T9 using training data

as positive class and unlabeled test data as
negative class.

p(xi |Ttest) —_ p(z—train)( 1 1]

2. Infer Welghts p(Xi | Ttrain) p(z—test) p(z-train | Xi | '9) )

Unlabeled test data Training data (labels ignored)
£ o <™ oy
@ 0.4
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Direct Estimation of Importance Weights

. 1 . .
1. Train model P(Ttram|Xw9)=1+e¢<xif3 using training data

as positive class and unlabeled test data as
negative class.

p(xi |Ttest) _ p(TTrain)[ 1 1)

2. Infer Welghts p(Xi | Ttrain) p(Ttest) p(Ttrain | Xi ! 9) )

3. Train final classifier on weighted training data.

Unlabeled test data Training data (labels ignored)

66
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Direct Estimation of Importance Weights

= The logistic regression of the first step also has a
regularization parameter.

s Set parameter using grid search and n-fold cross
validation.

= (Label information is whether instance is training or
test instance.)

= Hence, possible to tune regularization parameter.

—
(@)
=3
QD
0]
n
O
=5
)
=
D
=

Unlabeled test data Training data (labels ignored)

[Bickel, Bruckner Scheffer, Discriminative learning for differing
training and test distributions, ICML 2007] 67




Direct Estimation of Importance Weights

= Toxicity study conducted in country X has yielded
labeled data.

= In country Y, physicians prefer different drugs,
leading to a different distribution over drug
prescriptions.

= How would you learn a toxicity model that works
well for country Y?

= Does importance sampling make a difference at
all? How does the decision whether or not a
combination of substances is toxic depend on the
distribution of substances administered?
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Direct Estimation of Importance Weights

s Goal: Model that minimizes risk on  p(x |z.,)
= Training data governed by p(x |z

= Optimal resampling weights:
p(xi |Ttest) — p(Ttrain)[ 1 _1]

train )

p(xi | Z-train) p(Ttest) p(Ttrain | Xi)

= Train logistic regression model for p(z.. [%,9 using
training data as positive data and unlabeled test
data as negative class.

s Calculate weights (above formula) and train
classifier on weighted training data.
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KLIEP

= Alternative way of estimating density ratio.
= Define weights w(x,) such that w(x,) p(x; | 7,.) = P(X; | Tieer)

= Minimize KL-divergence between distributions of
test data and weighted training data.

KLEP(X; | 7o) [ WOX7) POX; | Zygain )]

P(X; | Tiest)
W(X;) POX; | Zyin)
P(Xi | Tiest)
P(X; | Ziain)
= [ P(X; | 7) log W(x;)dx; + cONSt

LS logw(x,) =— —
1= n

test test

—
(@)
=3
QD
0]
n
O
=5
)
=
D
=

- ‘. p(Xi | Ttest) |Og

= : p(xi | Ttest) |Og dXi _J. p(xi | z-test) |Og W(Xi)dxi

Q

> logg(x)" 9
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KLIEP

= Minimize KL-divergence between distributions of
test data and weighted training data.

KLEPOX, | ) W06 PO, | 7)) ¥ = 377 Tog ()"

test

_|
o
O
Q
n
)]
e}
=
D
—h
@
®

= Weighted training data w(x;)p(x; | 7)) = P(X [ 7.4) have
to be nortmalized, weights have to be positive.

= Optimization problem:
KLEP(X; | Ziese) [| WOX;) PX; | 7 )] =
§ =argmax, Y “logg(x,)" I
subject to > " log ¢(x,)" 9 =n
forallj: 9, >0

train

[Sugiyama, Suzuki, Nakajima, Kashima, H., von Binau, Kawanabe.
Direct importance estimation for covariate shift adaptation. 71
Annals of the Institute of Statistical Mathematics, vol.60, no.4, 2008. ]




Kernel Mean Matching

= Alternative way of estimating density ratio.
= Define weights w(x,) such that w(x,) p(x; | z,.n) = P(X; | Teeer)
s EXpected mean feature mapping:

u.($(x)) = [ p0)p(x] 7)dx

s When k(x,x)=¢(x)"¢(x") 1S a universal kernel, then
there is a one-to-one relationship between . (4(x))
and p(x|r)

= |dea: set weights such that
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test
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Kernel Mean Matching

= ldea: set weights such that

H, (P(X) =, (W(X)p(X))
= Weights have to be positive and normalized.
= Optimization problem:

3 W X) - D ) |

train ntest

_|
o
O
Q
n
)]
e}
=
D
—h
@
®

w =argmin, ||

= Optimization problem is convex.

= Regularization: impose upper bound on individual
weights and sum over weights.

= Problem: need labeled test data to tune reqgularizer.

[Huang, Smola, Gretton, Borgwardt, Schoélkopf, Correcting sample
selection bias by unlabeled data. NIPS 2007.] 73




Importance Sampling for Domain Adaptation

s Minimize risk on test distribution:
Rest = | [ €01 o OOIP(Y: 1 %) X, | 7 )XY,
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= Rephrase as expected weighted training loss

p(Xi. Yi Iz )
st (0) = i Q) (6, 6)0) PO Y1y By ),
t t '[ j p (X yl traln traln ) t t

= Estimate on training sample:

train p(X yl |Ttest test) X.
Ree (0)=D" " D0 17 tram)f(y. fy(x,)) +(0)

w(x;. %)




Importance Sampling for Domain
Adaptation

= Density ratio can be rephrased:
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p(xi | Ttest s 9test) — p(Ttrain ! 9train) [ 1 _1]
p(xi | Ttrain ! 0'[rain) p(Ttest ! 0'[es'[) p(z—train ! 6train | Xi’ yl)

N

Given x,y, how likely is instance
to have come from training set?

Ratio of training-
to-test set size

[Bickel, Sawade, Scheffer. Transfer Learning by Distribution Matching
for Targeted Advertising. NIPS 2008.] 75




Direct Estimation of Importance Weights

. 1 . .
1. Train model P(Ttram,ﬂnamIxi,ym9)=1+e¢(xi,yim using training

data as positive class and labeled test data as
negative class.
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- : 0..) P70, 0,.) 1
2 Infer Wel htS p(XI |Ttest test/ _ train ? ™ train ( _]}
g p(Xi | Train ’etrain) p(Ttest ! 0test) p(Ttrain ! 0train | Xi ! yi ! ‘9)

3. Train final classifier on weighted training data.

Unlabeled test data Training data (labels ignored)
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Estimation of Importance Weights

= Importance weights match weighted training data to
distribution of test data.

= Learn logistic regression model p(z,., |x;,9 and let
p(xi |Ttest) — p(Ttrain)[ 1 _1]
p(Xi | Z-train) p(Ttest) p(Ttrain | Xi ! l9)
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W(Xi) =

= Alternatively, minimize KL divergence between
weighted training and test data

= Alternatively, minimize distance between mean of
weighted training and test data

= Applies to domain adaptation too (some labeled
data from target distribution required).

77




AVEIS)£...
SOV,

&‘H
o O il
Ep
S, a
[ ]

&Q)am
‘ o

University of Potsdam
Dept. of Computer Science

Adversarial Learning

Tobias Scheffer



Adersarial Learning

Current virus Mutated virus
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New therapy




Adersarial Learning

Email generator

Email Service
Spam filter Provider

Future emall
generator

1
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prator ~ Email Generator

New spam filter
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Overview

= Learning with Invariances

Make result of learning process invariant to specific
types of transformations (X, y)

= Minimax probability machine
s Game Theory Basics
= Game-Theoretic Learning Models
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Robust Learning Models

s Standard learning assumes training data drawn iid
from distribution at application time.

s Optimistic, if adversary tampers with distribution.

= Robust learners minimize maximum risk for any
distribution over a certain class of distributions.

= Underlying assumption: adversary can choose
distribution within certain class, and will try to inflict
greatest possible damage for learner.
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Learning with Invariances

= Training set is drawn according to P(Xi, ¥i | Zuain+ Oyein)

s Adversary gets to exercise transformation on
distribution: Tiest+ Orest :(D(Ttest’etest)

m Testsetis drawn according to p(X;, Y; | Tt 0iest)

= Equivalent to drawing according to p(x;, ¥; | 7y 04ain)
and transforming instances: x,y'=®(x,y)

= Goal: Minimize regularized empirical risk:
R= 21 (1, (%), ¥,) +©(6)
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Heuristic SVM Learning with Invariances

s Dual SVM decision function

(0 =27 BYid(x) $(x)
= IS determined by support vectors
S={x:p4 >0}

= Heuristic invariant learning algorithm:
Learn SVM on training data L

If set of transformations is finite: add all possible
X,y =®(x,y):X,ye LNS,® e ®} to training set

Otherwise: draw some ®e® and (x,y)eLnNS
and add X,y =®(x,y) to L.

Learn from enhanced sample.
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Reminder: SVM-Struct

= Hinge-loss for binary SVM:
£(y, fy(x)) = max(0,1- yf, (x))
= Loss for multi-class SVM and SVM-Struct
0y, fo(x,)) = max,.., (0,1- o (x, y) + fo(x, ¥))
= Corresponding constraint optimization problem

k

min,, /lzn:; + %ZB‘TB‘
i=1

i=1

_|
o
O
Q
n
)]
e}
=
D
—h
@
®

subject to the constraints:

Vy=y.:fo(x.,y.) = f,(X,y)+1-&
and & >0.
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SVM Learning with Invariances

s Define loss
00y, %, fg) =mMaX, g,y (0,1= f (D(X), ) + fo (D(X),¥))

Max over all transformations Margin

and incorrect labels y*
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[Teo, Globerson, Roweis, Smola, Convex learning with invariances,
NIPS 2007]
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SVM Learning with Invariances

s Define loss

(Y, X, fy) = MaX, g oy (0,1= fo (D(X), y) + (D (X), ¥))
= LOSs IS a convex upper bound on zero-one loss.
= Constrained oPtimization problem

min, . A> & + EZO”Bi
i=1

=1
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subject to the constraints:
Vy'# VO e ®@: 1 (D(X;), y;) 2 T (D(X;), y)+1-¢
and & >0.
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SVM Learning with Invariances

s Define loss
0y, %, fg) = MaXy gy (01— fo (D(X), y) + £, (©(X), ¥))
= Constrained optlmlzatlon problem
mlneéﬂZE + ZZB'TG subject to the constraints:

ivy = YD €@ 1,(000). 1) 1o(@05). ) +1- £
and & >0.
s SVM-Struct working set algorithm:
Iterate over examples, find the one y* and

transformation that violates margin the most:

y", @ =argmax,.,1- fo(D(x;),y;) + fo (P(x),y))
Add to working set, solve OP, reiterate.
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Minimax Probability Machine

= Letp, , be the set of all distributions with mean 4
and covariance x.

= Distribution of training data:
Positive class has mean , , covariance matrix x ..
Negative class has mean ,_, covariance matrixz_ .

= At application time, adversary can choose any input
distribution p(x,+)eP, ; ,p(X,-DeP, ;.

= What is the right optimization criterion for learner?
Based on zero-one loss

89
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Minimax Probability Machine

= Letp, , be the set of all distributions with mean 4
and covariance x.

= Distribution of training data:
Positive class has mean , ,, covariance matrix x ;.
Negative class has mean ,_, covariance matrix z_, .

= At application time, adversary can choose any input
distribution p(x,+)eP, ; ,p(X,-DeP, ;.

= Optimization criterion for learner:

MaX i ciep,  ponen, e Doy | Lon(Fo (0, V) P(X, )X

41241

[Lanckriet et al., Minimax Probability Machine, NIPS 2002] 90
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Minimax Probability Machine

= Letp, , be the set of all distributions with mean 4
and covariance x.

= Distribution of training data:
Positive class has mean , ,, covariance matrix x ;.
Negative class has mean ,_, covariance matrix z_, .

= At application time, adversary can choose any input
distribution p(x,+)eP, ; ,p(X,-DeP, ;.
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= Optimization criterion for learner:
max p(x,+1)ePﬂ+1’Z+1, p(x,—l)eP#_1’Z_1 ZyJ.EO/l( fe (X)’ y) p(X’ y)dX
= Can be rewritten as convex optimization problem.

[Lanckriet et al., Minimax Probability Machine, NIPS 2002] 91




Invariant SVMs

= Family of methods for making SVM more robust
against transformations of instances by adversary.

= Simplistic approach: add transformed support
vectors to training set.

= More sophisticated: minimize, for all examples,
maximal loss over transformation space.

= Minimax probability machine: minimize maximal
loss over all input distributions with observed mean
value and variance.
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Game Theory Basics

s Game defined in terms of
Players P, ..., P,
Action spaces 44, ..., 4,
Cost functions Cy, ...,C, wWith C; : A; X -+ X A4, = R

Cost functions are interleaved optimization problems.

s Zero-sum game: two players, C,(A,A)+C,(A,A)=0
One player's loss is other player's gain.

= Non-cooperative game:
Players cannot exchange messages

93
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Game Theory Basics

= Static game:

Players act simultaneously, not knowing their
opponents’ move.

Learner and adversary act simultaneously.

= Dynamic, extensive-form game:

Some ordering defined over moves, information
about previous actions.

Stackelberg competition: learner committs first to
model, then adversary transforms distribution.

94
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Game Theory Basics

= Complete information:
Each player know other players’ cost functions.
= Incomplete information:

At least one player is uncertain about opponents’
cost functions.

Bayesian players infer expected cost functions over
their beliefs.
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Game Theory: Zero Sum Games

= Security level for player P,
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C, = min max C, (a4, a
1 a1€A1 CleAz 1( 1 2)

= Security level for player P,

C, = min max C,(a{,a,) = —max min C(a,,a
2 aZEAZ a1€A1 2( 1 2) CleAZ CllEAl 1( 1 2)
= Example
C,=2,r0w 3

C, =1, column 1

(1_4) (11) (12)
P1 (!1) (!2) (1'3)

( 1_1) ( ’_2) ( 1'1)
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Game Theory: Zero Sum Games

= Minimax strategy for player P,

_|
@)
O
Q
n
wn
e
=
D
—h
®

a, = argmin max C;(a4, a,)
a1€A1 aZEAZ

= Minimax strategy for player P,

a, = argmin max C,(aq, a,)
aZEAZ a1€A1

s Example
dl — 3, dz =1
Cl(al; dz) =1

= [t holds that
El 2 Cl(ﬁl, az) 2 _C_z
No guaranteed stability




Game Theory: Non-Zero Sum Games

= Generalization of zero-sum games
C; = —C, no longer prerequisite

= Minimax strategy
Still guarantees least maximal costs

Not well motivated if opponent wants to minimize
own costs and costs not directly antagonistic.
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Game Theory: Nash Equilibrium

= Equilibrium (stable points)
(ai, ay) is Nash equilibrium if
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*x a; = argmin C;(aq, a;)

a1€4A4
*x a, = argmin C,(aj, a,)
a,€A,
No equilibrium Equilibrium
(1_4) ( 11) ( 12) (1_4) (1_3) ( 12)
P1 ( 1 1) ( ) 2) ( ) '3) P1 ( 1 1) ( 1 _3) ( 1 '3)
( ) _1) ( ) '2) ( ) _1) ( ) _1) ( ) _2) ( ) '1)
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Game Theory: Nash Equilibrium

= Equilibrium (stable points)
(ai, ay) is Nash equilibrium if
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*x a; = argmin C; (a4, a;)
a1€A1

*x a, = argmin C,(aj, a,)
azeAz

= In a Nash equilibrium, each player reacts optimally
to their opponent's move.
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Game Theory: Nash Equilibrium

= Equilibrium (stable points)
(ai, ay) is Nash equilibrium if
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*x a; = argmin C;(aq, a;)
a1€A1

*x a, = argmin C,(aj, a,)
azeAz

= In a Nash equilibrium, each player reacts optimally
to their opponent's move.

= Simple algorithm: imagine any move; infer
opponent’s optimal reaction; infer own optimal
reaction; reiterate until fixed point is reached.

= Fixed point is Nach equilibrium.
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Game Theory: Nash Equilibrium

= When does it make sense to acto according to
Nash equilibrium?
= Minimax is overly pessimistic:

Adversaries do not want to maximize your costs but
want to minimize their own costs.

= When adversary will act according to Nash
equilibrium, using this equilibrium too is optimal.
Only makes sense to assume if equilibrium exists.

= When players act according to different equilibria,
then outcome can be arbitrarily bad for all players.

Acting according to Nash equilibrium makes most
sense if equilibrium is unique.
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Game Theory: Extensive-Form Games

s SO far static games: players act simultaneously
No information about adversary's action exploitable.

s Extensive form games: players act in defined order.

Game takes the for of a tree.

s Simplest form: Stackelberg competition
First player acts first

Then, adversary acts (knowing the first player's
move).

Then, costs are inferred.
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Game Theory: Extensive-Form Games

s Simplest form: Stackelberg competition
First player acts first

Then, adversary acts (knowing the first player's
move).

= Adversary solves simple minimization problem:
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a, = argmin V,(aj,a,).
azeAz

m First player has to account for adversary:

a; = argmin max V; (a4, a,)
aleAl azeAz
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Game Theory Basics

= Static (simultaneous actions) vs. extensive-form.
= Non-cooperative (N0 message passing)
= Zero-sum (antagonistic costs) vs non-zero-sum

= Zero-sum games: minimax strategies minimizes
worst-case (over adversarial action space) costs.

= Nash equilibrium: deviating unilaterally increases
costs for either player.
= Non-zero-sum games:

Nash equilibrium optimal if adversary will act
according to the same equilibrium.

Does the game have an equilibrium? Is it unique?
Will the adversary be rational enough to infer it?
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Game-Theoretic Learning Models
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Adversary (v=+1) Test distribution Costs for adversary

Training
distribution

Interleaved
optimization
problems

E-MAIL
Generator

Costs for learner

Model parameters
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Game-Theoretic Learning Models

= Action of the data generator (adversary)
Theoretically: transform input distribution p(x,y) — p(x,y)
Empirically: transform data D={(x;,y;)}—>D'={(x",y")}
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= Action of the learner:
Choose model parameters f,(x)=0"¢(x)
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Game-Theoretic Learning Models

= Empirical costs of the data generator (adversary)
C.(0D )__Z€+1(9T¢(X) ¥i)+p.Q.,(D, D)

I~ [\
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= Empirical costs of the learner
! 1 - 4
C.,(0,D)= HZ€_1(9T¢(Xi), Yi)+p1€2,(6)

- N
Learner’s loss function Regularizer
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Game-Theoretic Learning Models

= Empirical costs of the data generator (a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>